
https://www.econometricsociety.org/

Econometrica, Vol. 89, No. 5 (September, 2021), 2261–2301

RECONCILING MODELS OF DIFFUSION AND INNOVATION: A THEORY OF
THE PRODUCTIVITY DISTRIBUTION AND TECHNOLOGY FRONTIER

JESS BENHABIB
Economics Department, New York University and NBER

JESSE PERLA
Vancouver School of Economics, University of British Columbia

CHRISTOPHER TONETTI
Graduate School of Business, Stanford University and NBER

The copyright to this Article is held by the Econometric Society. It may be downloaded, printed and re-
produced only for educational or research purposes, including use in course packs. No downloading or
copying may be done for any commercial purpose without the explicit permission of the Econometric So-
ciety. For such commercial purposes contact the Office of the Econometric Society (contact information
may be found at the website http://www.econometricsociety.org or in the back cover of Econometrica).
This statement must be included on all copies of this Article that are made available electronically or in
any other format.

https://www.econometricsociety.org/
https://www.econometricsociety.org/


Econometrica, Vol. 89, No. 5 (September, 2021), 2261–2301

RECONCILING MODELS OF DIFFUSION AND INNOVATION: A THEORY OF
THE PRODUCTIVITY DISTRIBUTION AND TECHNOLOGY FRONTIER

JESS BENHABIB
Economics Department, New York University and NBER

JESSE PERLA
Vancouver School of Economics, University of British Columbia

CHRISTOPHER TONETTI
Graduate School of Business, Stanford University and NBER

We study how endogenous innovation and technology diffusion interact to deter-
mine the shape of the productivity distribution and generate aggregate growth. We
model firms that choose to innovate, adopt technology, or produce with their existing
technology. Costly adoption creates a spread between the best and worst technologies
concurrently used to produce similar goods. The balance of adoption and innovation
determines the shape of the distribution; innovation stretches the distribution, while
adoption compresses it. On the balanced growth path, the aggregate growth rate equals
the maximum growth rate of innovators. While innovation drives long-run growth,
changes in the adoption environment can influence growth by affecting innovation in-
centives, either directly, through licensing of excludable technologies, or indirectly, via
the option value of adoption.

KEYWORDS: Endogenous growth, technology diffusion, adoption, imitation, innova-
tion, technology frontier, productivity distribution.

1. INTRODUCTION

THIS PAPER STUDIES how the interaction between adoption and innovation determines
the shape of the productivity distribution, the expansion of the technology frontier, and
the aggregate economic growth rate. Empirical estimates of productivity distributions
tend to have a large range, with many low-productivity firms and few high-productivity
firms within even very narrowly defined industries and products (Syverson (2011)). The
economy is filled with firms that produce similar goods using different technologies, and
different firms invest in improving their technologies in different ways. Some firms are in-
novative, bettering themselves while simultaneously pushing out the frontier by creating
technologies that are new to the world. There are, however, many firms that instead pur-
posefully choose to adopt already invented technologies.1 The main contribution of this
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paper is to develop a model of aggregate growth that delivers a productivity distribution
with an endogenous expanding frontier, range, and tail index that result from optimal firm
adoption and innovation behavior.

In the model, innovation pushes out the frontier, creating the technologies that will
eventually be adopted, and stretches the distribution. Adoption helps to compress the
distribution by keeping the laggards from falling too far behind. Beyond affecting the
shape of the distribution, both adoption and innovation affect the aggregate growth rate.
Long-run growth is driven by innovation, but that does not necessarily mean that adoption
cannot affect long-run growth. Rather, it means that adoption affects growth by affecting
the incentives to innovate. Changes in the adoption environment can affect innovation
incentives either because innovators may one day become adopters or because adopters
may directly pay to license technologies from innovators.

Model Overview and Main Results. We first build a simple model of exogenous inno-
vation and growth to isolate how innovation and adoption jointly determine the shape
of the productivity distribution. We then extend the model by having firms choose an
amount to invest in innovation. In the extended model, the long-run aggregate growth
rate is determined by the innovation activity of high-productivity firms. Our analysis fo-
cuses on firms’ decisions to adopt and innovate and how, together, these actions generate
aggregate growth and shape the productivity distribution. Thus, the costs and benefits of
adoption and innovation are at the core of the model.

Firms are heterogeneous in productivity, and a firm’s technology is synonymous with its
productivity. Adoption is modeled as paying a cost to instantaneously receive a draw of
a new technology; this is a model of adoption because the new technology is drawn from
the existing distribution of technologies currently in use for production. To represent in-
novation, we model firms as being in either a creative or a stagnant innovation state; when
creative, costly investment in innovation generates geometric growth in productivity. The
more a firm invests in innovation, the faster it grows. A firm’s innovation state evolves
according to a two-state Markov process.2 At each point in time, any firm has the abil-
ity to invest in innovation or adoption, and firms optimally choose whether and how to
improve their productivity. Since adoption is a function of the distribution of available
technologies, the productivity distribution is the aggregate state variable that moves over
time, and this movement is driven by firms’ adoption and innovation activity.

In equilibrium, low-productivity firms invest in adopting technologies; stagnant firms
fall back relative to creative firms; medium-productivity creative firms invest small
amounts to grow a bit through innovation; and higher-productivity creative firms invest
a lot in innovation and push out the productivity frontier. König, Song, Storesletten, and
Zilibotti (2020) used firm micro-data on R&D expenditure and productivity growth to
provide evidence that adoption is more productive for low-productivity firms and that
higher-productivity firms invest more in innovation, consistent with the behavior of firms
in our model.

Easy adoption, in the sense of low cost or high likelihood of adopting a very produc-
tive technology, tends to compress the productivity distribution, as the low-productivity

2Modeling stochastic innovation with finite idiosyncratic growth rates is the key technical feature that de-
livers many of the desired model properties in a tractable framework. For example, we want the productivity
distribution to have finite support so we can study how the commonly used abstraction of infinite support
affects key properties of balanced growth path equilibria. Finite support with a maximum that is growing rep-
resents better technologies being invented over time.
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firms are not left too far behind. A low cost of innovation tends to spread the distribution,
as the high-productivity firms can more easily escape from the pack. Thus, the shape of
the distribution, which typically looks like a truncated Pareto with finite support, is de-
termined by the relative efficiency of adoption and innovation. The stochastic innovation
state ensures that some firms that have bad luck and are uncreative for a stretch of time
fall back relative to adopting and innovating firms, generating a non-degenerate station-
ary distribution with adoption existing in the long run.

Adoption and innovation are not two completely independent paths, with some firms
perpetual adopters and some perpetual innovators. Rather, the ability of all firms to in-
vest in both activities generates general equilibrium interactions between activities. A key
spillover between adoption and innovation can be seen in the option value of adoption.
For high-productivity firms which are far from being low-productivity adopters, the value
of having the option to adopt is small. The lower a firm’s productivity, the closer it is to
being an adopter and, thus, the higher the option value of adoption. The higher the option
value of adoption, the lower the incentive to spend on innovating to grow away from en-
tering the adoption region and exercising that option. Thus, the value of adoption, which
is determined by the cost of acquiring a new technology and the probability of adopting a
good technology, affects incentives to innovate and, therefore, the aggregate growth rate.
Through this channel, the better is adoption, the more tempting it is to free ride on other
firms pushing out the frontier by investing less in innovation.

We conclude the paper by exploring how the excludability of technology affects the in-
terplay of adoption and innovation. We model adopters as having to pay a fee to the firm
whose technology they adopt. Hence, there is an additional direct link between adoption
behavior and innovation incentives that affects the shape of the distribution and the aggre-
gate growth rate. Through this licensing channel, easier adoption leads to more licensing,
which increases investments in innovation and aggregate growth.

1.1. Recent Literature

Our paper is closely related to the idea-diffusion literature, including Luttmer (2007),
Alvarez, Buera, and Lucas (2008, 2013), Lucas (2009), Perla and Tonetti (2014), and Lucas
and Moll (2014). Buera and Lucas (2018) provided a survey of this literature.

In an early paper on technology diffusion, Nelson and Phelps (1966) developed a model
that specifies a differential equation that determines technology diffusion as a function of
the distance between the leader and the follower. Lucas (2009) is a key paper in the idea
diffusion literature that allows ideas to diffuse not just from a leader to followers, but
potentially from and to all agents in the economy. In this idea-diffusion model, the prob-
ability of receiving a particular idea depends on the frequency of that idea in the whole
population. Perla and Tonetti (2014) and Lucas and Moll (2014) advanced the literature
by modeling agents who make a choice to invest in technology diffusion. Thus, the amount
of diffusion is no longer exogenous (either as an exogenous function of the distance to the
frontier or as an exogenous arrival rate of draws from a source distribution), which allows
for the study of incentives, externalities, and welfare-improving policies. In this paper,
we build on these models of idea diffusion, but allow agents to grow not just through
diffusion, but also through innovation.

We contribute to the literature that studies both innovation and technology diffusion.
Buera and Oberfield (2020) is a related semi-endogenous growth model of the interna-
tional diffusion of technology and its connection to trade in goods. The authors combined
the processes of idea diffusion and innovation, in the spirit of Jovanovic and Rob (1989).
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They modeled productivity upgrading according to a single process that mixes compo-
nents of innovation and adoption. In contrast, our paper models these as distinct actions
potentially undertaken by different firms. Furthermore, their focus was not on the en-
dogenous determination of the shape of the distribution, since it is given exogenously
by the distribution from which innovation increments are drawn.3 The industry evolution
model of Jovanovic and MacDonald (1994) features firms that grow from innovation and
imitation, but a firm cannot purposely target its investment to innovation or imitation.
Benhabib, Perla, and Tonetti (2014) explicitly modeled a choice between investing in in-
novation and adoption, but in a Nelson–Phelps style model in which agents’ decisions do
not depend on the entire productivity distribution.

Perhaps the most closely related paper to ours is König, Lorenz, and Zilibotti (2016)
(KLZ). There, as in our paper, firms make an optimal choice between two stochastic pro-
cesses: one that is related to the existing productivity distribution (imitation) and one that
is not (innovation). As in our paper, higher-productivity firms choose to focus more on in-
novation than imitation.4 Both models produce sustained growth through the interaction
of innovation and imitation. A key difference is our analysis of a finite relative technology
frontier (i.e., analysis in a model in which the ratio of the maximum to minimum produc-
tivity is finite in the long run). This allows us to study the intensive margin of innovation
of frontier firms and how the option value of adoption induces a free-riding incentive
and slows growth. We also study excludable technology by modeling licensing, which in-
troduces another mechanism through which adoption affects long-run growth.5 The im-
portance of the tension between endogenous innovation and imitation is emphasized in
König et al. (2020), which uses that perspective to analyze the recent transformation of
the Chinese economy.

Acemoglu, Aghion, and Zilibotti (2006), Chu, Cozzi, and Galli (2014), and Stokey
(2014, 2017) also explored the relationship between innovation and diffusion from dif-
ferent perspectives.6 We share a similarity with those papers, as there is an advantage to
backwardness in the sense of option value from the ability to adopt. The crucial element
that enables the interesting tradeoff between innovation and technology diffusion in our
model is that the incumbents internalize some of the value from the evolving distribu-
tion of technologies, thus distorting their innovation choices. That is, incumbent firms not
adopting today realize they may adopt in the future, and they derive positive value from
this option to adopt.

3Eeckhout and Jovanovic (2002) also modeled technological spillovers that are a function of the distribution
of firm productivity. Acemoglu, Aghion, Lelarge, Van Reenen, and Zilibotti (2007) also modeled spillovers
across firms in innovation, captured by the number of firms that have attempted to implement a technology
before.

4There are a few other differences to consider when comparing to König, Lorenz, and Zilibotti (2016). KLZ
assumed no cost of either innovation or imitation and used a limit to firms’ absorptive capacity to induce a
tradeoff between innovation and adoption, whereas in our paper there is a cost of innovation and a cost of
imitation. Furthermore, as the arrival rate of imitation is not immediate in KLZ, they have an asymptotically
power-law left tail. Our model has a sweeping barrier, which results from the limit of a rapid imitation rate.
Finally, the monopolistic competition and differentiated goods KLZ model provides an economic foundation
for a profit function that increases in productivity, which we specify exogenously.

5The closest paper to ours in terms of modeling licensing is Hopenhayn and Shi (2020), which provides a
search-theoretic framework for analyzing bargaining over technology transfers in an environment with con-
gestion externalities and creative destruction. See also Jovanovic and Wang (2020), who studied the impact of
technology diffusion on the incentive to innovate over the dynamic path of an industry’s evolution.

6An alternative line of literature studies the diffusion of technology from incumbents to entrants, as in
Luttmer (2007), Acemoglu and Cao (2015), Sampson (2015), and Lashkari (2020).
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Staley (2011) and Luttmer (2012a) explored the interaction of innovation and technol-
ogy adoption in models in which both processes are exogenous.7 Their approach connects
to the well-understood KPP–Fisher equation, which allows for a clear formal analysis
and sharp characterization of model properties. In our paper, we explore how adoption
and innovation choices respond to economic incentives and generate endogenous growth.
Luttmer (2020) diagnosed the issue of multiple equilibria and hysteresis in idea-diffusion
models and showed how the introduction of a finite maximum growth rate for agents that
learn from technology diffusion can generate uniqueness.

One question that arises in diffusion models is where do new ideas come from, and
how does the discovery of those new ideas determine the aggregate growth rate.8 To study
this question, we model long-run growth that occurs through the interaction of innovation
and diffusion. In our model with endogenous innovation, the interaction between inno-
vation and adoption is especially interesting when the distribution has a finite frontier.
The rate at which frontier firms invest in discovering new ideas determines the long-run
aggregate growth rate. If there were no innovation, there would be no long-run growth.
When the frontier is finite, the efficiency of adoption affects long-run aggregate growth
in part because frontier firms realize they may become adopters in the future.

2. BASELINE MODEL WITH EXOGENOUS STOCHASTIC INNOVATION

We first analyze an exogenous growth model to simplify the introduction of the envi-
ronment and to isolate the economic forces that determine the shape of the stationary
normalized productivity distribution. The only choice that a firm makes in this exogenous
innovation version of the model is whether to adopt a new technology or to continue pro-
ducing with its existing technology. In Section 4, we develop the full version of the model
in which a firm chooses its innovation rate. Endogenous innovation allows us to study
how adoption and innovation activities interact to determine not only the shape of the
productivity distribution, but also the aggregate growth rate.

2.1. The Baseline Model

Time is continuous, starting at t = 0, and the horizon is infinite. A continuum of firms
produce a homogeneous product and are heterogeneous over their productivity, Z, and
innovation ability, i ∈ {��h}. For simplicity and clarity of exposition, firm output equals
firm profits equals firm productivity.9 The measure of firms with productivity less than
Z in innovation state i at time t is denoted by �i(t�Z). The maximum productivity of
any firm, Z̄(t)≡ sup{support{��(t� ·)} ∪ support{�h(t� ·)}}, is interpreted as the technol-
ogy frontier. There is a unit measure of firms, so that ��(t� Z̄(t))+�h(t� Z̄(t))= 1. The
minimum of the support of the distribution is denoted by Mi(t), so �i(t�Mi(t))= 0, and
Mi(0) > 0. This minimum of support is a key variable that is determined endogenously.
Define the distribution unconditional on type as �(t�Z)≡��(t�Z)+�h(t�Z).

7Luttmer (2012a, 2015a, 2015b, 2020) provided careful analysis of the role of hysteresis, including the im-
portant interaction of the stochastic innovation process with initial conditions.

8Using an initial distribution with infinite support, such as in Perla and Tonetti (2014) and the baseline model
of Lucas and Moll (2014), may provide a good approximation for the contribution of adoption to growth in the
medium run, even absent a theory of innovation that pushes out a frontier. See Figure 2 of Perla and Tonetti
(2014) and Figure 9 of Buera and Lucas (2018).

9See Perla, Tonetti, and Waugh (2021) for guidance on how to enrich the model with monopolistically com-
petitive firms that hire labor at an equilibrium wage to produce differentiated products.
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A firm with productivity Z can choose to continue producing with its existing technol-
ogy, in which case it would grow stochastically according to the exogenous innovation
process, or it can choose to adopt a new technology.

Stochastic Process for Innovation. In the high-innovation-ability state (h), a firm is in-
novating and its productivity is growing at an exogenous rate γ ≥ 0 (for now, but a choice
made by firms in Section 4). In the low-innovation-ability state (�), it has zero productiv-
ity growth from innovation (without loss of generality). Sometimes firms have good ideas
or projects that generate growth and sometimes firms are just producing using their ex-
isting technology. The jump intensity from low to high is λ� > 0 and from high to low
is λh > 0. Since the Markov chain has no absorbing states and there is a strictly positive
flow between the states for all Z, the support of the distribution conditional on � or h is
the same. With support{�(t� ·)} ≡ [M(t)� Z̄(t)], define the growth rates of the lower and
upper bounds as g(t)≡M ′(t)/M(t) and gZ̄(t)≡ Z̄′(t)/Z̄(t).

We model innovation according to this continuous-time two-state Markov process be-
cause it allows for the existence of balanced growth path equilibria with finite-support
productivity distributions in which adoption persists in the long run and growth is driven
by the innovation choices of frontier firms. Persistence of the innovation state is mod-
eled primarily for technical reasons related to continuous time rather than being of direct
economic interest. Thus, we will perform our numerical exercises calibrating the model
with high transition rates. Loosely speaking, shocks to the innovation state are like i.i.d.
growth rate shocks that avoid continuous-time measurability issues with i.i.d. stochastic
processes.

Adoption and Technology Diffusion. A firm has the option to adopt a new technology
by paying a cost. Adoption means changing production to use a technology that some
other firm is using. We model this adoption process as undirected search across firms, as
in Perla and Tonetti (2014) and Lucas and Moll (2014).

For simplicity, we model the adopting firm as drawing a new productivity, Z, from the
unconditional distribution, �(t�Z), and starting in the low-innovation state, �. That is,
adopters cannot innovate immediately after adoption.10

The cost of adoption grows as the economy grows, and it is parameterized by ζ > 0.
The scale of the economy at time t can be summarized by the minimum of the support of
the productivity distribution M(t). Thus, we model the cost of adoption as ζM(t).

Leapfrogging to the Frontier. Finally, firms can leapfrog to the frontier of the produc-
tivity distribution with arrival rate η > 0. The possibility that innovators can jump to the
frontier represents some chance that the innovation process generates a big insight, in-
stead of steady incremental progress. Adopters jumping to the frontier captures the pos-
sibility that sometimes adopters get lucky and their search for a new technology finds the
best one available.

10Model variations on conditional versus unconditional draws and maintaining or switching innovation types
have few quantitative or qualitative consequences, especially given the high switching rates between states used
in our numerical examples. The model setup here keeps the formulas cleaner since adopters only show up as a
source in the Kolmogorov forward equation for the �-type distribution, which saves on notation.
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For tractability, we model such a jump as temporarily disruptive to innovation, such
that all leapfrogging firms become �-types and must wait for the Markov transition to h
before they become innovators again.11

Firm Value Functions. Firms discount at rate r > 0. Let Vi(t�Z) be the continuation
value function for type i—that is, the value at time t of being an i-type firm and producing
with productivity Z:12

rV�(t�Z)= Z︸︷︷︸
Production

+λ�
(
Vh(t�Z)− V�(t�Z)

)︸ ︷︷ ︸
Switch to h

+η(
V�(Z̄)− V�(Z)

)︸ ︷︷ ︸
Jump to Frontier

+∂tV�(t�Z)︸ ︷︷ ︸
Capital Gains

� (1)

rVh(t�Z)= Z︸︷︷︸
Production

+γZ∂ZVh(t�Z)︸ ︷︷ ︸
Exogenous Innovation

+λh
(
V�(t�Z)− Vh(t�Z)

)︸ ︷︷ ︸
Switch to �

+η(
V�(Z̄)− Vh(Z)

)︸ ︷︷ ︸
Jump to Frontier

+ ∂tVh(t�Z)︸ ︷︷ ︸
Capital Gains

	 (2)

A firm’s continuation value derives from instantaneous production plus capital gains as
well as productivity growth if in the high-innovation-ability state, and it accounts for the
intensity of jumps between innovation abilities i and jumps to the frontier.

The value of adoption is the continuation value of an �-type firm having a new produc-
tivity drawn from �(t�Z) less the cost of adoption:

Net Value of Adoption =
∫ Z̄(t)

M(t)

V�(t�Z)d�(t�Z)︸ ︷︷ ︸
Gross Adoption Value

− ζM(t)	︸ ︷︷ ︸
Adoption Cost

(3)

The Optimal Adoption Policy and the Minimum of the Support of the Productivity Dis-
tribution. The optimal firm policy is given by a threshold rule Ma(t) such that all firms
with productivity Z ≤Ma(t) will choose to adopt and firms with Z >Ma(t) will not adopt.
Since the value of continuing is increasing in Z, and the net value of adopting is indepen-
dent of Z, the firm’s optimal adoption policy takes the form of a reservation productivity
rule. While the adoption threshold could conceivably depend on the innovation type i,
see Appendix A.5 for a proof showing that �- and h-type firms choose the same thresh-
old, Ma(t), since the net value of adoption is independent of the current innovation type.

As draws are instantaneous, for any t > 0 this endogenous Ma(t) becomes the evolving
minimum of the �i(t�Z) distributions, M(t), and in a slight abuse of notation, we will
refer to both the minimum of the support and the firm adoption policy as M(t) going
forward.13

11The assumption that all leapfroggers switch to the � state is purely for analytical convenience and can be
changed without introducing qualitative differences. Similarly, the jumps to the frontier could occur exclusively
for adopting firms instead of operating firms with no qualitative differences.

12To ease notation, we define the differential operator ∂ such that ∂z ≡ ∂
∂z

and ∂zz ≡ ∂2

∂z2 . When a function
is univariate, derivatives are denoted with a prime, for example, M ′(z)≡ ∂zM(z)≡ dM(z)

dz .
13To see why the minimum of the support is the endogenous threshold, consider instantaneous adoption

as the limit of a Poisson arrival rate of draw opportunities approaching infinity. In any positive time interval,
firms wishing to adopt would gain an acceptable draw with probability approaching 1, so that Z >M(t) almost
surely. A heuristic derivation of this limit is given in Appendix A.6.
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In principle, there may be adopters of either innovation type with productivity in the
common adoption region Z ≤M(t). Define Si(t)≥ 0 as the flow of i-type firms entering
the adoption region at time t and denote the total flow of adopting firms as S(t)≡ S�(t)+
Sh(t).

The Firm Problem. A firm’s decision problem can be described as choosing an optimal
stopping time of when to adopt. Equivalently, it can be described as a free boundary
problem, choosing the productivity level at which to adopt. Necessary conditions for the
free boundary problem include the continuation value functions and, at the endogenously
chosen adoption boundary M(t), value-matching conditions,

Vi
(
t�M(t)

)︸ ︷︷ ︸
Continuation Value at Threshold

=
∫ Z̄(t)

M(t)

V�(t�Z)d�(t�Z)− ζM(t)︸ ︷︷ ︸
Net Adoption Value

� (4)

and smooth-pasting conditions,

∂ZV�
(
t�M(t)

) = 0 if M ′(t) > 0� (5)

∂ZVh
(
t�M(t)

) = 0 if M ′(t)− γM(t) > 0	 (6)

Value matching states that at the optimal adoption reservation productivity, the value
of producing with the reservation productivity is equal to the value of adopting a new
productivity. Smooth pasting is a technical requirement that can be interpreted as an
intertemporal no-arbitrage condition—a necessary condition only if firms at the boundary
are moving backwards relative to the boundary over time.

The Technology Frontier. Given the adoption and innovation processes, if Z̄(0) <∞,
then Z̄(t) will remain finite for all t, as it evolves from the innovation of firms in the
interval infinitesimally close to Z̄(t) and the growth rate of innovating firms is finite. In-
deed, the frontier grows at rate γ since there is always some firm arbitrarily close to the
threshold that grows at rate γ.

LEMMA 1—Growth Rate of the Finite Frontier: If Z̄(0) <∞, then Z̄(t) <∞ ∀t <∞
and gZ̄ ≡ Z̄′(t)/Z̄(t)= γ.

If [�h(t� Z̄(t)) − �h(t� Z̄(t) − ε)] > 0 ∀ε > 0, then there are always firms arbitrarily
close to the frontier. If some of them are type h, then they will push the frontier out at
rate γ. Given that there are a continuum of firms and that the arrival rate of changes in
type i is a memoryless Poisson process, for all finite t there will always be some h-type
firms that are arbitrarily close to the frontier and have never jumped to the low state, so
the growth rate of the frontier is always γ.

Law of Motion of the Productivity Distribution. The Kolmogorov forward equa-
tion (KFE) describes the evolution of the productivity distribution for productivities
above the minimum of the support. The KFEs in the CDFs for �- and h-type firms
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are

∂t��(t�Z)= −λ���(t�Z)+ λh�h(t�Z)︸ ︷︷ ︸
Net Flow from Type Change Jumps

−η��(t�Z)+ηH(
Z − Z̄(t))︸ ︷︷ ︸

Leapfroggers

(7)

+ (
S�(t)+ Sh(t)

)︸ ︷︷ ︸
Flow of Adopters

�(t�Z)︸ ︷︷ ︸
Draw ≤Z

− S�(t)︸ ︷︷ ︸
�-Adopters

�

∂t�h(t�Z)= −γZ∂Z�h(t�Z)︸ ︷︷ ︸
Innovation

−λh�h(t�Z)+ λ���(t�Z)︸ ︷︷ ︸
Net Flow from Type Change Jumps

−η�h(t�Z)︸ ︷︷ ︸
Leapfroggers

− Sh(t)︸ ︷︷ ︸
h-Adopters

� (8)

where H(·) is the Heaviside step function. For each type i, the KFEs keep track of
inflows and outflows of firms with a productivity level at or below Z. An i-type firm
with productivity less than or equal to Z stops being in the i-distribution at or be-
low Z if it keeps its type and increases its productivity above Z or if it changes its
type.

A firm can keep its type and increase its Z in three ways: adoption, innovation, or
leapfrogging. An adopting firm has probability �(t�Z) of becoming type � and drawing a
productivity less than or equal to Z and the number of firms adopting is (S�(t)+ Sh(t)).
Hence, (S�(t) + Sh(t))�(t�Z) is added to the �-distribution. Additionally, the flow of
adopters of type i, Si(t), is subtracted from the corresponding distribution. The Si(t) term
is subtracted from the CDFs for all Z because adoption occurs at the minimum of the
support. Intuitively, the adoption reservation productivity acts as an absorbing barrier
sweeping through the distribution from below. As it moves forward, it collects adopters
at the minimum of the support, removes them from the distribution, and inserts them
back into the distribution according to �. Recognizing that the jumps in type at intensity
λi are of measure 0 when calculating the number of firms that cross the boundary in any
infinitesimal time period, the flow of adopters comes from the flux across the moving
boundary M(t).

The KFE for the h-types has a term that subtracts the firms that grow above Z through
innovation: there are ∂Z�h(t�Z) amount of h-type firms at productivity Z, and because
innovation is geometric, they grow above Z at rate γZ.

Firms of productivityZ switching from type i to type i′ leave the i-distribution and enter
the i′-distribution at rate λi. For example, the amount of �-type firms with productivity less
than or equal to Z is ��(t�Z), and they leave the �-distribution at rate λ� and enter the
h-distribution at the same rate.

Firms jump to the frontier at rate η, so they are subtracted from the CDF. For analytical
tractability, all leapfrogging firms become type �, so they are added to the �-distribution
at Z̄(t).

The firms are owned by a representative consumer who values the undifferentiated
good with log utility and a discount rate ρ > 0. If the growth rate on the balanced growth
path is g, then the interest rate faced by firms is r = ρ+ g.

2.2. Normalization, Stationarity, and Balanced Growth Paths

In this paper, we study economies in equilibrium on balanced growth paths (BGPs), in
which the distribution is stationary when properly rescaled and aggregate output grows at
a constant rate. The economy is characterized by a system of equations defining the firm
problem, the laws of motion of the productivity distributions, and consistency conditions
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FIGURE 1.—Normalized and unnormalized distributions.

that link firm behavior and the evolution of the distributions. To compute BGP equilib-
ria, it is convenient to transform this system to a set of stationary equations. While we
could normalize by any variable that grows at the same rate as the aggregate economy, it
is convenient to normalize variables relative to the endogenous boundary M(t). Define
normalized productivity, normalized distributions, and normalized value functions as

z ≡ log
(
Z/M(t)

)
� (9)

Fi(t� z)= Fi
(
t� log

(
Z/M(t)

)) ≡�i(t�Z)� (10)

vi(t� z)= vi
(
t� log

(
Z/M(t)

)) ≡ Vi(t�Z)

M(t)
	 (11)

The adoption threshold is normalized to log(M(t)/M(t))= 0, and the relative technology
frontier is z̄(t)≡ log(Z̄(t)/M(t)). See Figure 1 for an illustration of the normalized and
unnormalized distributions. Define the normalized unconditional distribution as F(z)≡
F�(z)+ Fh(z), which is a valid CDF (i.e., F(0)= 0 and F(z̄(t))= 1).

With the above normalizations, it is possible that the value functions, productivity dis-
tributions, and growth rates are stationary—that is, independent of time.

Summary of Stationary KFEs and Firm Problem. A full derivation of the normalized
system is given in Appendix A.1. Here, we summarize the resulting equations that charac-
terize the laws of motion for the normalized productivity distributions and the normalized
firm problem. The equations that determine the stationary productivity distributions are

0 = gF ′
�(z)+ λhFh(z)− λ�F�(z)−ηF�(z)+ηH(z− z̄)+ SF(z)− S�� (12)

0 = (g− γ)F ′
h(z)+ λ�F�(z)− λhFh(z)−ηFh(z)− Sh� (13)

0 = F�(0)= Fh(0)� (14)

1 = F�(z̄)+ Fh(z̄)� (15)

S� =
{
gF ′

�(0) if g > 0�
0 otherwise�

(16)

Sh =
{
(g− γ)F ′

h(0) if g > γ�
0 otherwise	

(17)
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FIGURE 2.—Normalized stationary value functions.

The necessary conditions of the normalized firm problem are

ρv�(z)= ez − gv′
�(z)+ λ�

(
vh(z)− v�(z)

)
)+η(

v�(z̄)− v�(z)
)
� (18)

ρvh(z)= ez − (g− γ)v′
h(z)+ λh

(
v�(z)− vh(z)

) +η(
v�(z̄)− vh(z)

)
� (19)

v(0)= 1
ρ

=
∫ z̄

0
v�(z)dF(z)− ζ� (20)

v′
�(0)= 0 if g > 0� (21)

v′
h(0)= 0 if g > γ	 (22)

Given that the two types of firms choose the same adoption threshold, we drop the type
index for the value functions at the adoption threshold: v(0)≡ vi(0).

Equations (12) to (15) are the stationary KFEs with boundary values. Recall that g is
the growth rate of the minimum of the support and γ is the innovation growth rate. In
the normalized setup, firms are moving backwards toward the constant minimum of the
support and their growth rate determines the speed at which they are falling back.

Equations (18) and (19) are the Bellman equations in the continuation region and (20)
is the value-matching condition that links the value of continuing to the value of technol-
ogy adoption. The smooth-pasting conditions given in equations (21) and (22) are neces-
sary only if the firms of that particular type are drifting backwards relative to the adoption
threshold.

See Figure 2 for a visualization of the normalized Bellman equations.

DEFINITION 1—Recursive Competitive Equilibrium With Exogenous Innovation: A
recursive competitive equilibrium with exogenous innovation consists of initial distribu-
tions �i(0� z), adoption reservation productivity functions Mi(t), value functions Vi(t� z),
interest rates r(t), and sequences of productivity distributions �i(t� z) such that the fol-
lowing hold:

1. Given r(t) and �i(t� z), Mi(t) are the optimal adoption reservation productivities,
with Vi(t� z) the associated value functions.

2. Given Mi(t) and �i(t� z), r(t) is consistent with the consumer’s intertemporal
marginal rate of substitution.

3. Given Mi(t), �i(t� z) fulfill the laws of motion in (7) and (8) subject to the initial
condition �i(0� z).
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FIGURE 3.—Tension between stochastic innovation and adoption.

We restrict our interest to equilibria that are balanced growth paths. Define the growth
rate of aggregate output to be gY(t)≡ ∂tEt[Z]/Et[Z].

DEFINITION 2—Balanced Growth Path Equilibrium With Exogenous Innovation:
A balanced growth path equilibrium with exogenous innovation is a recursive competitive
equilibrium such that the growth rate of aggregate output is constant and the normalized
productivity distributions are stationary. That is, gY(t)= gY and Fi(t� z)= Fi(z) ∀t.

Lemma 2 shows that on a BGP, there is a tight relationship between the growth rate
of the minimum of the support of the distribution, which is driven by firms’ adoption
decisions, and the growth rate of aggregate output.

LEMMA 2—Growth of the Endogenous Adoption Threshold and Aggregate Output:
On a balanced growth path, the growth rate of the endogenous adoption threshold equals the
growth rate of aggregate output. That is, g= gY .

Aggregate output is defined as Y(t) ≡ Et[Z]. Mean productivity written as a function
of the productivity cdf is Et[Z] = ∫ Z̄(t)

M(t)
[1 −�(t�Z)]dZ. Using (9) and (10) with a change

of variables shows that Y(t) = M(t)
∫ z̄(t)

0 [1 − F(t� z)]ez dz. On a BGP, the normalized
productivity distributions are constants, that is, Fi(t� z) = Fi(z) with z̄ constant. Hence,
gY ≡ Y ′(t)/Y(t)=M ′(t)/M(t)= g.

How Adoption and Innovation Generate a Stationary Normalized Distribution. Fig-
ure 3 provides some intuition on how proportional growth and adoption can cre-
ate a stationary distribution. Without endogenous adoption, nothing prevents the pro-
portional random shocks from spreading out the distribution, driving the variance
to infinity.14 However, when adoption is endogenous, as the distribution spreads, the
incentives to adopt a new technology increase, and the adoption decisions of low-
productivity agents then act to compress the distribution. In a BGP equilibrium, tech-
nology diffusion can balance innovation, thus allowing for a stationary normalized dis-
tribution. Note, there are two possible types of normalized stationary distributions: ei-

14König, Lorenz, and Zilibotti (2016) provided a similar intuition in their Proposition 2, which shows the
expansion of the distribution in the absence of imitation.
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ther z̄ is a finite constant or the normalized stationary distribution has infinite sup-
port. As we show later, these two types of stationary distributions have different impli-
cations for how adoption and innovation determine the equilibrium aggregate growth
rate.

3. HOW ADOPTION AND INNOVATION INTERACT TO SHAPE THE PRODUCTIVITY
DISTRIBUTION

In this section, we compute BGP equilibria for economies with finite-support produc-
tivity distributions. There are two main questions that motivate our analysis. First, how
do adoption and innovation determine the shape of the productivity distribution? Sec-
ond, what is the aggregate growth rate, and how is it affected by parameters related to
adoption and innovation?

To set the stage, consider Perla and Tonetti (2014), which is essentially a discrete-time
version of the economy in this paper with η = γ = 0 and is similar to other papers in
the literature, such as Lucas and Moll (2014), as discussed in Buera and Lucas (2018).
In Perla and Tonetti (2014), a BGP equilibrium with strictly positive growth exists only
if the initial distribution has a power-law tail. Furthermore, the shape of the long-run
distribution is given by the shape of the tail of the initial distribution. Additionally, the
long-run growth rate is a function of the shape of the initial distribution and the cost of
adoption.

Previewing some results, in contrast to Perla and Tonetti (2014), here the shape of the
stationary distribution is endogenous, a function of parameters related to innovation and
adoption. Furthermore, because the productivity distribution has finite support, the long-
run aggregate growth rate equals the growth rate of innovators and is independent of
initial conditions and the cost of adoption. In this section, the growth rate of innovators
is exogenous (γ), so the aggregate growth rate is exogenous, but Section 4 develops the
endogenous growth version of the model in which innovation investment is a choice made
by firms.

Proposition 1 characterizes the BGP equilibrium in the case of exogenous innovation
and a finite-support distribution. Define the constants λ̂ ≡ λ�

η+λh , λ̄ ≡ ρ+λ�+λh
ρ+λh , and ν =

ρ+η
γ
λ̄.

PROPOSITION 1—BGP Equilibrium With Exogenous Innovation and Finite Support:
Let Z̄(0) < ∞. Then, a unique equilibrium exists with z̄ < ∞ and g = γ. The stationary
distribution is

F�(z)= F ′
�(0)(

F ′
�(0)−η/γ)

(1 + λ̂)
(
1 − e−αz)� z ∈ [0� z̄]� (23)

Fh(z)= λ̂F�(z)� z ∈ [0� z̄]� (24)

with

α≡ (1 + λ̂)(F ′
�(0)−η/γ)

� (25)

z̄ = log
(
γF ′

�(0)/η
)

α
	 (26)
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The equilibrium F ′
�(0) solves the following implicit equation (substituting for α and z̄):

ζ + 1
ρ

=
γF ′

�(0)αλ̄
(

−e
−νz̄(−1 + e−αz̄)η

ραν
+ ez̄η

(
e−αz̄ − 1

)
−αρ + −e−(α+ν)z̄ + 1

ν(α+ ν) + −ez̄−αz̄ + 1
α− 1

)
γ
(
γF ′

�(0)−η)
(ν+ 1)

	

(27)

The amount of adopters are

S� = γF ′
�(0)� (28)

Sh = 0	 (29)

The firm value functions are

v�(z)= λ̄

γ(1 + ν)
(
ez + 1

ν
e−νz + η

ρ

(
ez̄ + 1

ν
e−νz̄

))
� (30)

vh(z)= ez + (λh −η)v�(z)+ηv�(z̄)
ρ+ λh 	 (31)

PROOF: See Appendix A.2. A key condition to check when evaluating a candidate equi-
librium is that the F ′

�(0) that solves equation (27) is strictly larger than η/γ so that the
relative frontier given in equation (26) is well defined. A proof of uniqueness, showing that
z̄ <∞ and that g= γ is the unique equilibrium growth rate, is in Appendix A.4. Q.E.D.

Since g= γ, there are no h-type agents that cross the adoption boundary and the total
amount of adopters is the flow of �-type agents moving backwards at a relative speed of g
across the adoption barrier.

Existence, Uniqueness, and Aggregate Growth. The first main result is that the equi-
librium is unique. There is a unique stationary distribution that is independent of initial
conditions. Furthermore, the aggregate growth rate equals the growth rate of innovators:
g= γ.

Recall from Lemma 1 that if the initial distribution has finite support, then the station-
ary distribution will have finite support because the maximum growth rate of a firm is
finite. Additionally, the growth rate of the frontier equals the growth rate of innovators,
that is, gZ̄ = γ. Furthermore, Lemma 2 stated that the growth rate of aggregate output
equals the growth rate of the minimum of support of the distribution, that is, gY = g. The
minimum of support of the distribution evolves as firms at the minimum choose to adopt
better technologies.

Proposition 1 links together the results of these two lemmas. If the productivity dis-
tribution has finite support (i.e., if Z̄(0) <∞), then clearly g ≤ gZ̄ , otherwise eventually
the minimum of support would be larger than the maximum of support. In addition, if
z̄ <∞, for the normalized distribution to be stationary, the growth of the minimum and
maximum of support must be equal. That is, g must equal gZ̄ . Proposition 1 states that
z̄ <∞ in equilibrium. Thus, if Z̄(0) <∞, then on a BGP, g= gY = gZ̄ = γ.
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How could the aggregate growth rate be driven by adoption but also equal the growth
rate of innovators? Lemma 2 may make it seem as though the behavior of adopters de-
termines the long-run growth rate, but instead of this causal interpretation, it should be
interpreted as an equilibrium relationship between adoption and innovation. Adoption is
endogenous, and firms invest in adoption to keep up with the frontier. If the frontier were
to grow faster, there would be more good new ideas arriving faster, which would make it
worthwhile for firms to invest more in adopting those ideas faster.

Economic Intuition for Firm Behavior That Generates a Stationary Distribution. Leap-
frogging to the frontier (η > 0) plays an essential role in delivering a stationary distribu-
tion with z̄ <∞. Leapfrogging prevents the frontier from escaping from the rest of the
distribution by ensuring that frontier technologies never have zero probability of being
adopted.15

Leapfrogging to the frontier by a positive mass of agents can contain the escape in rela-
tive productivities by lucky firms that get streaks of long sojourns in the high-growth state
h. As they eventually lose their innovative ability and become �-types, they will be over-
taken by others that leapfrog to the frontier from within the productivity distribution and
replenish it. This leapfrogging/quality ladder process prevents laggards from remaining
laggards forever.

To understand the importance of leapfrogging in generating a finite support, consider
a simple modification to the adoption process that allows for higher chances of adopting
better technologies. Specifically, let z be drawn from a distortion of the unconditional dis-
tribution, F(Z)κ. Depending on the value of κ, the distribution is twisted so that adopters
are either more or less likely to get better technologies compared to drawing from the un-
conditional distribution F(Z). For any κ ∈ (0�∞)—even those representing a very high
probability of adopting a very high productivity—without leapfrogging (i.e., ifη= 0) there
does not exist an equilibrium with finite support of the normalized productivity distribu-
tion.16

The Bellman equations (30) and (31) are the sum of three components: the value of
production, the option value of adoption, and the value of jumping to the frontier. That is,
in addition to the value of production with the current z modified by time discounting and
the probabilities of switching i-type, the value function accounts for changing z through
adoption and accounts for the chance of jumping to the frontier. The option value of
adoption is decreasing in a firm’s productivity level; a firm with a high relative productivity
has a long expected time until its relative productivity falls far enough to the point where
it chooses to exercise the adoption option.

Whether the support of the distribution is finite has important economic implications.
Because the ratio of the frontier to the minimum of the support (the relative frontier,
z̄(t)) is finite, in the long run frontier firms still place positive value on the option to adopt.
This means that increases in the value of adoption, whether associated with lower costs or
higher benefits of adoption, will affect the value of frontier firms. Foreshadowing: In the
endogenous growth environment, when γ is a choice, changes in the value of adoption will
influence innovation behavior at the frontier, which will affect aggregate growth rates.

15If η were to equal 0 so there were no leapfrogging, then the distribution would be stationary only asymp-
totically. That is, even though z̄(t) <∞for allt <∞, limt→∞ z̄(t)= ∞. In the case of η= 0, there is hysteresis
and there is no longer a unique aggregate growth rate of g= γ.

16A simple further extension is to let firms choose κ at some cost. We interpret this as endogenous search
intensity, with firms exerting effort to try to adopt better technologies with higher probability.
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FIGURE 4.—Exogenous vi(z) and F ′
i (z).

Shape. The productivity distribution has an endogenous truncated-tail index, α, that
represents the shape of the productivity distribution. Furthermore, there is an additional
shape parameter of the distribution: the range of the productivity distribution, given by
the max-min ratio z̄. Model primitives such as the cost of adoption and the rate of innova-
tion affect both the tail index (α) and how much better the best firm can be relative to the
worst firm in the economy (z̄). Because z̄ is a finite constant, meaning that the Fi(z) have
finite support, α is best interpreted as the shape parameter of a right-truncated power
law.

Before moving to the endogenous growth case in the next section, we compute an equi-
librium with roughly calibrated parameter values and use comparative statics to illustrate
properties of the economy. This analysis will show how the cost of adoption and the in-
novation growth rate affect the shape of the distribution. We choose parameter values
to demonstrate model forces in the relevant region of the parameter space.17 The re-
sulting parameterization is γ = 0	02, ρ = 0	01, λ� = 0	533�λh = 1	128, ζ = 25	18, and
η= 0	00098.

First, as shown in Figure 4, v� and vh are very similar because the calibrated λi are large,
and thus the extra benefit of being in the high state or the relative pain from being in the
low state does not last very long. Second, the distributions Fi are power-law shaped, with
many low-productivity firms and few high-productivity firms, but they are truncated at z̄,
the relative frontier. The large measure of agents bunched up close to the minimum of
support in our model comes from the immediacy of technology adoption; with a stochastic
arrival as in König, Lorenz, and Zilibotti (2016), we would also have an asymptotically
power-law left tail. In this calibration, there are also fewer h firms than � firms at all
productivities; those measures are determined largely by the ratio λh/λ�.

Comparative statics on how changes in η�γ�ζ, and λh affect z̄ and α are shown in
Figure 5. Easier innovation, in the sense of a higher growth rate for innovators, spreads
out the distribution, creating a more distant technology frontier and a thicker tail. Easier
leapfrogging, in the sense of a higher probability of jumps to the frontier, also generates
thicker tails but generates less of a productivity gap between the best and worst firms.
Easier adoption, captured by lower costs ζ, compresses the distribution, shrinking the
relative frontier and thinning the tail.

17Details of the simple “calibration” used in our numerical exercises are given in Appendix C. We pick
parameters to match firm growth rates, the firm size distribution, the aggregate growth rate, and the risk-free
interest rate.
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FIGURE 5.—Comparative statics for exogenous innovation.

4. HOW ADOPTION AND INNOVATION INTERACT TO DETERMINE THE LONG-RUN
AGGREGATE GROWTH RATE

This section introduces endogenous investments in innovation. In the exogenous inno-
vation model of the previous section, the growth rate of the aggregate economy equaled
the growth rate of innovation at the finite frontier, that is, g = γ, but the growth rate of
innovation was exogenous. With endogenous innovation, there will be an analogous result
(g= γ(z̄)), where both the innovation rate γ(·) and the frontier z̄ are endogenously (and
jointly) determined. Hence, we are now in position to discuss how adoption affects the
choice of innovation at the frontier, and thus the aggregate growth rate.

4.1. Model With Endogenous Innovation and Excludability

We model firms that can control the drift of their innovation process, as in Atkeson and
Burstein (2010) and Stokey (2014).18 We will focus on two main cases that highlight how
adoption activity can affect long-run growth. In both cases, the long-run growth rate is
determined by the growth rate of high-productivity innovators, but changes in the cost of
adoption affect the growth rate of high-productivity firms by affecting their incentive to
invest in innovation.

The first case highlights that when the distribution has finite support, there is a positive
option value of adoption even for frontier firms. When firms decide how much to invest
in innovation, they take into account the option value of adoption. On the margin, the
more attractive is adoption, the stronger is the temptation to free ride and the weaker is
the incentive to innovate.

The second case nests the first case and generalizes the model by adding that ideas are
excludable, such that adopters need to pay a licensing fee to the higher-productivity firms
whose technology they want to adopt. In this case, more adopters lead to more licensing

18An alternative approach, as taken in Section 6 of König, Lorenz, and Zilibotti (2016), would be to have
the firm choose between adoption and innovation given an investment capacity.
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fees. When profits from licensing are tied to the quality of the technology being licensed
(e.g., with bargaining over surplus), there can be a positive link between adoption and
innovation. In both cases, we emphasize how externalities associated with innovation and
adoption affect aggregate growth.

As in the exogenous growth model analyzed in Section 3, in the endogenous growth
model the long-run growth rate cannot be larger than the maximum innovation rate of
firms. Aggregate growth is therefore driven by innovation (i.e., if the cost of technology
diffusion went to 0, the long-run aggregate growth rate would still be bounded by γ).

Licensing. Up to now, the firm providing the underlying technology to the adopter
was not able to prevent being imitated—that is, there was no excludability of the tech-
nology or intellectual property protection. To bring excludability to this environment with
adopters and innovators, we model licensing, in which an adopting firm must pay a fee to
the technology holder in order to adopt it.

The licensing fee is a fraction of the present discounted value of adopting the technol-
ogy, paid up front in a lump sum. Firms bargain to determine the size of the licensing fee.
The outside option of the adopting firm (i.e., the licensee) is to reject the bargain, pay
no fee, and continue on with its existing technology—that is, v(0). The outside option of
the licensor is simply to reject the offer, receive no fee, and continue on. Negotiations
take the form of Nash bargaining, with a bargaining power parameter ψ ∈ (0�1] for the
adopting firm.19

PROPOSITION 2—Profits and Value Matching With Licensing: Given firms’ equilibrium
innovation policy γ(·), the aggregate growth rate g, and distributions Fi(·), the flow profit
function is

π(z)= ez︸︷︷︸
Production

+ (
gF ′

�(0)+ (
g− γ(0))F ′

h(0)
)︸ ︷︷ ︸

Flow of Licensees

(1 −ψ)(v�(z)− v(0))︸ ︷︷ ︸
Profits per Licensee

	 (32)

The value-matching condition for adopting firms is

v(0)= 1
ρ

=
∫ ∞

0
v�(z)dF(z)− ζ

ψ
	 (33)

PROOF: See Appendix B.2. Q.E.D.

Full bargaining power to the licensor (ψ = 1) nests the baseline case without
excludability—that is, π(z)= ez and the cost of adoption is ζ. The value-matching condi-
tion reflects that adopters do not gain the full surplus from the newly adopted technology
by increasing the effective cost of search to ζ/ψ.

Thus, from an adopter’s perspective, the problems with and without license fees are
identical, except for a change in the effective cost of adoption and a modification of the
post-adoption continuation value of potentially becoming a licensor in the future. The
two environments are quite different for the innovator, however, as license fees provide
an extra incentive to innovate.

19See Hopenhayn and Shi (2020) for a closely related model of licensing. It provides a richer model of
bargaining over technology transfers, including a search-and-matching style congestion and creative destruc-
tion. Also related is Luttmer (2015a), which provides a model with assignment between teachers and students
decentralized through a price system.
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Endogenous Innovation. A firm in the innovative state can choose its own growth rate
γ ≥ 0 subject to a convex cost proportional to its current z. Let χ> 0 be the productivity
of its innovation technology and the cost be quadratic in the growth rate γ. h-type firms
will choose an optimal innovation rate γ(z) by considering the effect of innovation on the
profits from production and licensing, given by π(z) in equation (32), and the timing of
technology diffusion.

With endogenous innovation and licensing, the Bellman equations (18) and (19) be-
come

ρv�(z)= π(z)− gv′
�(z)+ λ�

(
vh(z)− v�(z)

) +η(
v�(z̄)− v�(z)

)
� (34)

ρvh(z)= max
γ≥0

{
π(z)− (g− γ)︸ ︷︷ ︸

Innovation Drift

v′
h(z)− 1

χ
ezγ2

︸ ︷︷ ︸
R&D cost

+ λh
(
v�(z)− vh(z)

) +η(
v�(z̄)− vh(z)

)}
	 (35)

Previously, the smooth-pasting condition was not a necessary condition for h-type firms
because they never crossed the adoption boundary on the BGP (g ≤ γ). Now, given that
γ(0) < g is possible, the h-type smooth-pasting condition may be necessary (see Ap-
pendix A.5 for more on this). Consequently,

v′
�(0)= 0 if g > 0� (36)

v′
h(0)= 0 if g > γ(0)	 (37)

The laws of motion in equations (12) and (13) also need to take into account the state-
dependent γ(z), and the possibility that h-type firms may cross the lower boundary if
g > γ(0), resulting in

0 = gF ′
�(z)+ λhFh(z)− λ�F�(z)−ηF�(z)+ηH(z− z̄)

+ (S� + Sh)F(z)− S�� (38)

0 = (
g− γ(z))F ′

h(z)+ λ�F�(z)− λhFh(z)−ηFh(z)− Sh� (39)

0 = F�(0)= Fh(0)� (40)

1 = F�(z̄)+ Fh(z̄)� (41)

S� = gF ′
�(0) if g > 0� (42)

Sh = (
g− γ(0))F ′

h(0) if g > γ(0)	 (43)

Summary of Equations and Numerical Methods. The endogenous innovation model
is given by equations (34) to (43), which include the Bellman equations, value-matching
conditions, smooth-pasting conditions, and KFEs. With endogenous growth, the need to
jointly solve the nonlinear Hamilton–Jacobi–Bellman equations and the Kolmogorov for-
ward equations necessitates numerical methods. The problem takes the form of a set of
ODEs with parameters constrained by equilibrium conditions that are themselves func-
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tions of the solutions to the ODEs. We compute the equilibrium using numerical methods
based on spectral collocation and quadrature.20

4.2. The Option Value of Adoption Affects Long-Run Aggregate Growth

To focus on the first case in which adoption can affect long-run growth rates via the
option value, in this section we shut off the second mechanism (licensing). That is, firms’
only source of profits is production (i.e., π(z)= ez) and there is no licensing cost paid by
adopters (i.e., ψ= 1).

Compared to the exogenous innovation case, the key additional necessary equilibrium
condition in the endogenous growth model is the first-order condition of the value func-
tion equation (35) with respect to γ(z), using π(z) = ez in this no-licensing case. The
FOC is

γ(z)= χ

2
e−zv′

h(z)	 (44)

With equation (44), it can be shown that the innovation rate is increasing in
productivity—that is, γ′(z) > 0. Consider this rate at the adoption boundary z = 0 to
see that γ(0)= v′

h(0). Then, γ(0)= 0 according to the smooth-pasting equation (37). The
intuition is that since the firm is right next to the adoption barrier, there is no additional
value in increasing its productivity marginally because it will adopt a new technology im-
mediately.

This demonstrates a tradeoff in firms’ innovation decisions: Investing more in innova-
tion grows their productivity and increases their profits, but firms with higher productivity
are further from the adoption threshold, and thus innovation decreases the option value
of adoption. Since the option value of adoption is a larger component of total value for
lower-productivity firms, the lower-productivity firms invest less in innovation. Intuitively,
for a firm just above the adoption threshold, why invest in innovation to get an incremen-
tal improvement when it can save the cost of innovating and, instead, adopt a technology
that is discretely better in expectation than the one it is currently using? Of course, the
cost of adopting and innovating will jointly determine this adoption threshold.

PROPOSITION 3—BGP Equilibrium With Endogenous Innovation and Finite Support:
The endogenous innovation choice is such that γ(0) = 0 and γ(z̄) = g. A continuum of
equilibria exist, parameterized by z̄.

PROOF: See Appendix B.1. Q.E.D.

An example of the optimal innovation policy and productivity distributions for an en-
dogenous growth BGP is shown in Figure 6.

In the endogenous innovation case, there are a continuum of equilibria indexed by
the frontier z̄, each with an associated aggregate growth rate g(z̄). Compared to Stokey

20The numerical solution technique uses a simple trick: line up the collocation nodes for the function ap-
proximation with those of the quadrature nodes for calculating expectations and equilibrium conditions. After
everything is lined up, every equation in the model can be naively stacked, including the Bellman equations,
KFEs, equilibrium conditions, etc., into a single nonlinear system of equations, and solved without any nested
fixed points. In practice, this requires using a high-performance solver and auto-differentiation, but it is easy
to implement and reasonably fast.
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FIGURE 6.—Endogenous γ(z) and F ′
i (z).

(2014), who featured a similar innovation process but differed in the treatment of adop-
tion, here the endogenous choice of γ is complicated by the option value of adoption.
Different distributions and associated z̄ induce different option values and allow for a
continuum of self-fulfilling γ(z̄). That is, a smaller z̄ increases the option value of adop-
tion for innovators at the frontier, which is a disincentive to innovate; this leads to less
innovation at the frontier, which, consistently, generates a smaller z̄. The hysteresis comes
from economic forces (rather than technical properties of stochastic processes or power-
law initial conditions) and is due to a complementarity between firms’ decisions and the
shape of the distribution.

Figure 7 plots the growth rate as a function of the frontier. This figure illustrates the
intuition that, because of the self-fulfilling balancing of innovation incentives and frontier
location, lower equilibrium values of z̄ are associated with lower equilibrium aggregate
growth rates. The smaller the relative frontier, the larger the option value of adoption at
the frontier, and the lower the incentive to push out the frontier by innovation.

Figure 8 plots the maximum aggregate growth rate from the set of equilibrium g as
a function of η. The maximum possible growth rate is a decreasing function of η. With
more jumps to the frontier, the distribution becomes more compressed, as discussed in
the exogenous innovation case in Section 3 and depicted in Figure 5. As the growth rate
of the frontier is determined by the innovation decision of firms with productivity z̄, the
more compressed is the distribution, the lower is the innovation rate, for the same reasons
that g(z̄) is increasing in Figure 7.

Because of this relationship between the location of the frontier and aggregate growth,
whenever z̄ <∞ (i.e., when η > 0), differences in the cost of technology adoption lead

FIGURE 7.—Equilibrium g as a function of z̄.
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FIGURE 8.—Maximum equilibrium g(η).

to differences in the aggregate growth rate. Recall from Figure 5 that in the exogenous
innovation case, a lower adoption cost results in a smaller z̄. Easier adoption compresses
the distribution by making it easier for laggard firms to keep up with fast-growing innova-
tors. In the endogenous innovation case, this change in the location of the frontier affects
innovation at the frontier, and thus the aggregate growth rate.

Figure 9 plots comparative statics on the adoption cost ζ in the model with z̄ < ∞
(i.e., η > 0). This figure shows that an increase in the adoption cost can increase the
aggregate growth rate, because it decreases the free-riding incentive for innovators. A
government policy interpretation of this comparative static is that a subsidy to technology
adoption financed by lump-sum taxes would decrease the aggregate growth rate. The ef-
fect of the subsidy on aggregate growth is stronger when frontier firms are closer to the
least-productive firms in the economy.

Comparison to Models With Exogenous Innovation. The results in this section are in
contrast to Perla and Tonetti (2014) and the baseline model in Lucas and Moll (2014),
where long-run growth is determined by initial conditions. Those papers can be inter-
preted as modeling how adoption can generate growth in the medium run.

It is also distinct from models with exogenous innovation and diffusion modeled as
geometric Brownian motion, such as Staley (2011) and Luttmer (2012b). In those models,
for the case of a large number of agents, taking the innovation meeting rate to infinity
leads to unbounded idiosyncratic growth rates. Here we get the opposite relationship
between adoption rates and growth, in part due to adoption and innovation being choices;
decreasing the cost of technology diffusion can decrease the growth rate, as it induces

FIGURE 9.—How aggregate growth varies with adoption costs (no licensing ψ= 1).
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FIGURE 10.—Endogenous γ(z), F ′
i (z), and α(z) with η≈ 0.

more free-riding for innovators. Another key difference in our setup is that the finite-
state Markov process and endogenous investment in innovation at convex cost conspire
to yield a finite upper bound on firm-level growth rates.

Endogenous Innovation With η≈ 0. To emphasize that it is the option value of adop-
tion that generates the link between adoption, innovation, and aggregate growth, we take
a short detour to study the case in which z̄ = ∞ asymptotically, which occurs in the limit
as η→ 0.

PROPOSITION 4—Endogenous Innovation With η≈ 0: For η→ 0, a BGP equilibrium
exists such that limt→∞ z̄(t)= ∞ and the unique long-run aggregate growth rate is the solution
to the cubic equation

g
(
g2 + g(2λh + λ� + 3ρ)+ 2ρ(λh + λ� + ρ)) = χ(g+ λh + λ� + ρ)	 (45)

The endogenous innovation choice is such that γ(0)= 0 and limz̄→∞ γ(z̄)= g.

PROOF: See Appendix B.1. Q.E.D.

As η→ 0, the number of jumps to the frontier approaches 0, z̄ approaches ∞, and
the model studied in Proposition 3 converges to the model studied in Proposition 4 (see
Figure 10).

Whenever innovation is a choice, the endogenous aggregate growth rate is the growth
rate chosen by innovators at the frontier. In contrast to the z̄ <∞ case, when η→ 0 so
that z̄ = ∞, the aggregate growth rate is independent of the cost of adoption. Note that
the cost of adoption does not appear in equation (45). This is because innovating firms
at the frontier have zero option value from adoption; therefore, changes in the cost or
benefits of adoption do not alter their innovation behavior. For intuition, see that the
option value term vanishes for large z in equation (31) (i.e., vl(z) ∝ ez for z→ ∞). The
key lesson is that when frontier innovators internalize that they may one day be adopters,
the costs and benefits of adoption affect their investments in innovation, which in turn
affect aggregate growth.

This result that the cost of adoption affects the aggregate growth rate only through
affecting the option value of adoption at the frontier holds when technology is not ex-
cludable (ψ = 1). We now turn to analyzing the case of excludability and licensing, in
which a subsidy to adoption can have a very different effect on innovation and aggregate
growth.
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FIGURE 11.—Growth and distribution shape under excludability and licensing.

4.3. Licensing and Partial Excludability

In order to isolate the effect of licensing on aggregate growth, we focus on the η ≈ 0
case, where Proposition 4 stated that, absent licensing, changes in the cost of adoption do
not affect the aggregate growth rate.

Analysis of Flow Profits. To study how licensing affects innovation incentives, we dif-
ferentiate the profit function in equation (32) to obtain:

π ′(z)= ez + (1 −ψ)gF ′(0)v′
�(z)	 (46)

On the margin, increasing firm productivity z increases profits for two reasons. The first
term ez is the marginal increase in profits from an increase in production. The second term
is the increase in profits from an increase in licensing revenue. Since the value function
is increasing in productivity, the second term is positive, so licensing provides a positive
incentive to innovate. Furthermore, since the value function is convex, licensing provides
stronger incentives to innovate for higher-productivity firms. The profits from licensing
disappear as z→ 0 because the surplus from adopting a technology close to the adoption
boundary goes to 0. Consequently, π ′(0) = 1. Finally, with licensing, profits become a
function of g. Faster growth means more adopters given a fixed F(z), and F(z) and v�(z)
are also themselves functions of g.

Role of Excludability. Figure 11 plots the aggregate growth rate as a function of the
excludability parameter ψ. When excludability is not too strong, the aggregate growth
rate is increasing in the degree of excludability (1 −ψ) (i.e., growth increases with weaker
bargaining power for the adopter). The increase in the aggregate growth rate is due to
the added incentive to invest in growing via innovation, as higher-productivity firms gain
extra profits from licensing the better technology to adopting firms.

There is, however, a countervailing force that dominates when excludability is already
strong. If the licensor’s bargaining power is too strong, the incentive to adopt technologies
becomes too small. Consequently, fewer firms adopt new technologies, ultimately gener-
ating less licensing revenue. Lower licensing revenue decreases the returns to innovation
for all firms, including those near the frontier that determine the aggregate growth rate.

To give a sense of the shape of the distribution, we plot the Gini index. For a wide range
of the parameter values, increasing excludability increases innovation activity and gener-
ates a more unequal distribution. This shows a tradeoff between productivity inequality
and aggregate growth rates. This positive association between productivity dispersion and
the aggregate growth rate operates through innovation activity, compared to the typical
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FIGURE 12.—Interaction of licensing and adoption costs.

link in the idea-diffusion literature (cf., Perla and Tonetti (2014)) that is driven by adop-
tion incentives.

Figure 12 presents another perspective on the role of excludability by plotting the aggre-
gate growth rate as a function of the adoption cost for various values ofψ. The model used
to generate Figure 12 is identical to the one discussed in Proposition 4 (η ≈ 0� z̄ = ∞),
except ψ is no longer equal to 1. In the absence of excludability (i.e., ψ = 1), adoption
costs can change the shape of the distribution, but they have no impact on the aggregate
growth rate. When ψ = 1, the option value of adoption is infinitesimal for the highest-
productivity firms that make the innovation decision at the frontier, so changes in the cost
of adoption do not affect aggregate growth. With a strong degree of excludability, how-
ever, lower adoption costs drive higher aggregate growth, even in this case with η ≈ 0.
While the option value of adoption for firms at the frontier is still infinitesimal, an inno-
vating firm gains extra profits by licensing to adopting firms, and there are more adopting
firms when adoption costs are lower.

The Gini coefficient is decreasing in the cost of adoption, but only modestly. The reason
is that the shape of the distribution near the adoption threshold is impacted by the large
mass of agents there, which is mostly determined by the innovation decisions of those
lower-productivity firms rather than by the frontier innovation rates.

Finally, we consider a variation on the experiment in Figure 9, which showed that when
(η > 0� z̄ <∞), without licensing (ψ= 1) a decrease in the cost of technology adoption
decreased the aggregate growth rate (by strengthening the free-riding incentive for inno-
vators). In Figure 13, we plot the same reduction in adoption costs, but in a model with
licensing (ψ = 0	5) and with positive option value of adoption at the frontier. Figure 13
shows that licensing can overturn the negative relationship between adoption costs and

FIGURE 13.—Comparative statics on adoption cost with option value of adoption and licensing (η = 0	01
and ψ= 0	5).
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aggregate growth rates, such that subsidizing technology adoption increases the aggregate
growth rate.

5. CONCLUSION

This paper develops a theory of the shape of the productivity distribution and of how
productivity improves over time, which generates long-run aggregate growth. Firms make
choices to invest in adoption and innovation, and the balance of these two activities across
heterogeneous firms determines aggregate outcomes. Adoption is a force that compresses
the distribution, helping laggards keep up with an expanding frontier. Innovation is a force
that stretches the distribution, pushing out the frontier. Balanced growth path equilibria
with stationary normalized distributions exist. On a BGP, a lower cost of adoption creates
a thinner-tailed distribution with a smaller distance between best and worst firms. Easier
innovation has an opposite effect, generating thicker tails and a larger range in produc-
tivity. More firms leapfrogging to the frontier generates thicker tails, but, because it helps
laggards keep up with innovators at the frontier, it shrinks the distance from the bottom
to the top of the distribution.

In addition to interacting to determine the shape of the distribution, adoption and inno-
vation combine to generate aggregate growth. On a BGP, the long-run aggregate growth
rate is the maximum growth rate chosen by innovating firms. If there were no innova-
tion, there would be no long-run growth. In this sense, innovation is the driver of growth.
Adoption, however, affects long-run growth by affecting the incentives to innovate. In
equilibrium, low-productivity firms choose to adopt and high-productivity firms focus on
innovation. Thus, growing through innovation increases the expected time until a firm be-
comes an adopter. Because innovators may one day become adopters, there is an option
value of adoption. If this option value is large, for example, because adoption is low cost,
then innovators may be tempted to free ride by investing less in pushing out the frontier,
content to fall back to the adoption threshold faster. This complementarity between the
distance to the frontier and the incentive to innovate generates multiplicity of BGP. If
the initial distribution has a small distance to the frontier, the option value of adoption
is high, and the incentives to push out the frontier are low. Thus, the small distance to
the frontier is self-reinforcing. In this sense, a subsidy to adoption can reduce aggregate
growth.

Adoption, on the other hand, may be a force to increase aggregate growth. When adopt-
ing firms must pay a licensing fee to the higher-productivity firm from which they are
adopting, there is an extra incentive to innovate. Innovation increases productivity, and
profits from licensing a high-productivity technology are larger than profits from licensing
a mediocre technology. Thus, more adopters induces more innovation, increasing aggre-
gate growth. Furthermore, there is a growth-maximizing level of excludability, parame-
terized by the bargaining power of adopters, that balances the amount of adopters and
the profits per adopter. Too strong of a bargaining power for adopters limits the innova-
tion incentive provided by the profits from licensing. Too weak of a bargaining power for
adopters raises the effective cost of adoption to the point that there are too few adopters.

In sum, the model illustrates how firm choices to adopt and innovate intertwine to
generate aggregate and cross-sectional effects on productivity in equilibrium in a growing
economy.
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APPENDIX A: EXOGENOUS INNOVATION

This section derives the equilibrium conditions for the model in which innovation is an
exogenous process.

A.1. Normalization

Define the normalized productivity distribution as the productivity distribution relative
to the endogenous adoption threshold M(t):

�i(t�Z)≡ Fi
(
t� log

(
Z/M(t)

))
	 (47)

Differentiate to obtain the pdf:

∂Z�i(t�Z)= 1
Z

∂Fi
(
t� log

(
Z/M(t)

))
∂z

= 1
Z
∂zFi(t� z)	 (48)

Differentiate (47) with respect to t and use the chain rule to obtain the transformation of
the time derivative:

∂t�i(t�Z)= ∂Fi
(
t� log

(
Z/M(t)

))
∂t

− M ′(t)
M(t)

∂iF
(
t� log

(
Z/M(t)

))
∂z

	 (49)

Use the definition g(t)≡M ′(t)/M(t) and the definition of z:

∂t�i(t�Z)= ∂tFi(t� z)− g(t)∂zFi(t� z)	 (50)

Normalizing the Law of Motion. This is derived with a more general adoption process,
where F̂i(t� z) is the mass of agents who draw a technology below z with the innovation
state i. In our baseline case, F̂�(t� z)= F(t� z) and F̂h(t� z)= 0.

Substitute (48) and (50) into (7) and (8):

∂F�
(
t� log

(
Z/M(t)

))
∂t

= g(t)∂F�
(
t� log

(
Z/M(t)

))
∂z

− λ�F�
(
t� log

(
Z/M(t)

)) + λhFh
(
t� log

(
Z/M(t)

))
+ (
S�(t)+ Sh(t)

)
F̂�

(
t� log

(
Z/M(t)

)) − S�(t)
−ηF�

(
t� log

(
Z/M(t)

)) +ηH(
log

(
Z/M(t)

) − log
(
Z̄(t)/M(t)

))
� (51)

∂Fh
(
t� log

(
Z/M(t)

))
∂t

= g(t)∂Fh
(
t� log

(
Z/M(t)

))
∂z

− λhFh
(
t� log

(
Z/M(t)

)) + λ�F�
(
t� log

(
Z/M(t)

))
− γZ

Z

∂Fh
(
t� log

(
Z/M(t)

))
∂z

+ (
S�(t)+ Sh(t)

)
F̂h

(
t� log

(
Z/M(t)

)) − Sh(t)
−ηFh

(
t� log

(
Z/M(t)

))
	 (52)
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Use the definition of z and reorganize to find the normalized KFEs:

∂tF�(t� z)

= −λ�F�(t� z)+ λhFh(t� z)+ g(t)∂zF�(t� z)+ S(t)F̂�(t� z)− S�(t)
−ηF�(t� z)+ηH(

z− z̄(t))� (53)

∂tFh(t� z)

= λ�F�(t� z)− λhFh(t� z)+ (
g(t)− γ)

∂zFh(t� z)

+ S(t)F̂h(t� z)− Sh(t)−ηFh(t� z)� (54)

where the domain of the normalized KFE at time t is [0� z̄(t)]. Recall that the unnormal-
ized flux (assuming M ′(t)≥ γM(t)) is

S�(t)≡M ′(t)∂Z��

(
t�M(t)

)
� (55)

Sh(t)≡ (
M ′(t)− γM(t))︸ ︷︷ ︸

Relative Speed of Boundary

∂Z�h

(
t�M(t)

)︸ ︷︷ ︸
PDF at Boundary

	 (56)

This is consistent with the solution to the ODEs in equations (7) and (8) at Z =M(t).
Normalizing and substituting from (48),

S�(t)= g(t)∂zF�(t�0)� (57)

Sh(t)= (
g(t)− γ)

∂zFh(t�0)	 (58)

Normalizing the Value Function. Define the normalized value of the firm as

vi
(
t� log

(
Z/M(t)

)) ≡ Vi(t�Z)

M(t)
	 (59)

Rearrange and differentiate (59) with respect to t:

∂tVi(t�Z)=M ′(t)vi
(
t� log

(
Z/M(t)

)) −M ′(t)
∂vi(t� log

(
Z/M(t)

)
∂z

+M(t)∂vi(t� log
(
Z/M(t)

)
∂t

	 (60)

Divide by M(t) and use the definition of g(t):

1
M(t)

∂tVi(t�Z)= g(t)vi(t� z)− g(t)∂zvi(t� z)+ ∂tvi(t� z)	 (61)

Differentiate (59) with respect to Z and rearrange:

1
M(t)

∂ZVi(t�Z)= 1
Z
∂zvi(t� z)	 (62)



TECHNOLOGY DIFFUSION AND INNOVATION 2289

Divide (2) by M(t) and then substitute from (61) and (62):

r
1

M(t)
Vh(t�Z)

= Z

M(t)
+ γM(t)

M(t)

Z

Z
∂zvh(t� z)+ g(t)vh(t� z)− g(t)∂zvh(t� z)

+ λh
(
v�(t� z)− vh(t� z)

) + η

M(t)

(
V�

(
t� Z̄(t)

) − Vh(t�Z)
) + ∂tvh(t� z)	 (63)

Use (59) and the definition of z and rearrange:(
r − g(t))vh(t� z)= ez + (

γ− g(t))∂zvh(t� z)+ λh
(
v�(t� z)− vh(t� z)

)
+η(

v�
(
t� z̄(t)

) − vh(t� z)
) + ∂tvh(t� z)	 (64)

Similarly, for (1),(
r − g(t))v�(t� z)= ez − g(t)∂zv�(t� z)+ λ�

(
vh(t� z)− v�(t� z)

)
(65)

+η(
v�

(
t� z̄(t)

) − v�(t� z)
) + ∂tv�(t� z)	

Optimal Stopping Conditions. Recall that we are solving the general problem with
draws to �̂i(t�Z) which nests our benchmark model. Divide the value-matching condi-
tion in (4) by M(t),

Vi
(
t�M(t)

)
M(t)

=
∫ Z̄(t)

M(t)

V�(t�Z)

M(t)
∂Z�̂�(t�Z)dZ

+
∫ Z̄(t)

M(t)

Vh(t�Z)

M(t)
∂Z�̂h(t�Z)dZ − M(t)

M(t)
ζ	 (66)

Use the substitutions in (48) and (59), and a change of variable z = log
(
Z/M(t)

)
in the

integral, which implies that dz = 1
Z

dZ. Note that the bounds of integration change to[
log

(
M(t)/M(t)

)
� log

(
Z̄(t)/M(t)

)] = [
0� z̄(t)

]
:

vi(t�0)=
∫ z̄(t)

0
v�(t� z)dF̂�(t� z)+

∫ z̄(t)

0
vh(t� z)dF̂h(t� z)− ζ	 (67)

Evaluate (62) at Z =M(t), and substitute this into (6) to give the smooth-pasting condi-
tion

∂zvi(t�0)= 0	 (68)

A.2. Proposition 1

Rather than use the interest rate that is consistent with a representative consumer who
has log utility, as in the body of the paper, here in the appendix we allow for a general
firm discount rate r.
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PROOF OF PROPOSITION 1: Define the following to simplify notation:

α≡ (1 + λ̂)S −η
g

� (69)

λ̂≡ λ�

η+ λh � (70)

λ̄≡ r − g+ λ� + λh
r − g+ λh � (71)

ν = r − g+η
g

λ̄	 (72)

Solve for Fh(z) in (13):

Fh(z)= λ̂F�(z)	 (73)

Substitute this back into (12) to get an ODE in F�:

0 = gF ′
�(z)+ (S −η)(1 + λ̂)F�(z)+ηH(z− z̄)− S	 (74)

Solve this ODE using F�(0)= 0:

F�(z)=

⎧⎪⎪⎨
⎪⎪⎩

S

(S −η)(1 + λ̂)
(
1 − e−αz)� 0 ≤ z < z̄�

S

(S −η)(1 + λ̂)
(
1 − e−αz̄)� z = z̄	

(75)

This function is continuous at z = z̄, and therefore so is Fh(z). The unconditional distri-
bution is

F(z)= (1 + λ̂)F�(z̄) (76)

= S

S −η
(
1 − e−αz)	 (77)

Use the boundary condition that F(z̄)= 1, and solve for z̄ with the assumption that S > η:

z̄ = log(S/η)
α

	 (78)

The pdf of the unconditional distribution is

F ′(z)= αS

S −ηe
−αz	 (79)

To solve for the value, solve (19) for vh(z):

vh(z)= ez + (λh −η)v�(z)+ηv�(z̄)
r − g+ λh 	 (80)
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Substitute into (18) and simplify:

(r − g+η)v�(z)= ez +ηv�(z̄)− g

λ̄
v′
�(z)	 (81)

Solve (21) with (81) and simplify:

v�(z)= λ̄

g+ (r +η− g)λ̄e
z + η

r − g+ηv�(z̄)+ 1
(r +η− g)(ν+ 1)

e−zν	 (82)

Evaluate (82) at z̄ and solve for v�(z̄):

v�(z̄)=
(

− η

g− r + 1
)(

ez̄λ̄

g+ (η+ r − g)λ̄ + e−νz̄

(η+ r − g)(ν+ 1)

)
	 (83)

Subtitute (83) into (82) to find an expression for v�(z):

v�(z)= λ̄

g(1 + ν)
(
ez + 1

ν
e−νz + η

r − g
(
ez̄ + 1

ν
e−νz̄

))
	 (84)

Substitute (79) and (84) into the value-matching condition in (20) and evaluate the inte-
gral:

ζ + 1
r − g

=
Sαλ̄

(
−e

−νz̄(−1 + e−αz̄)η
(−g+ r)αν + ez̄η

(
e−αz̄ − 1

)
α(g− r) + −e−(α+ν)z̄ + 1

ν(α+ ν) + −ez̄−αz̄ + 1
α− 1

)
g(S −η)(ν+ 1)

	

(85)

To find an implicit equation for the equilibrium S, take (85) and substitute for α and z̄
from (69) and (78).

In the case of log utility: substitute r = ρ + g, S = γF ′
�(0), and g = γ into (72), (73),

(80), (84) and (85) to complete Proposition 1. Q.E.D.

A.3. Distorted and Directed Draws

We can modify the adoption process so that the Z is drawn from a distortion of the un-
conditional distribution, twisting the distribution so that adopters are either more or less
likely to get better technologies compared to drawing from the unconditional distribution
F .

The distortion, representing the degree of imperfect mobility or beneficial adoption
prospects, is indexed by κ ∈ (0�∞), where the firm draws its Z from the cdf �(t�Z)κ,
or F(z)κ after normalization. Note that for higher κ, the probability of a better draw
increases, and integer values can be interpreted as the number of draws from the distri-
bution.
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With this, the value-matching condition integrates over the distorted distribution and
(12) and (20) become

v(0)= 1
ρ

=
∫ z̄

0
v�(z)dF(z)κ − ζ� (86)

0 = gF ′
�(z)+ λhFh(z)− λ�F�(z)−ηF�(z)+ηH(z− z̄)+ SF(z)κ − S	 (87)

The model remains computationally tractable and is amenable to an extension of firm’s
choosing κ at a cost.

A.4. No Equilibrium Exists With g < γ and η> 0

In the model discussed in Proposition 1, the fact that g ≤ γ immediately results from
the initial distribution having finite support. Here we demonstrate that there do not exist
equilibria with g < γ for any η> 0. Thus, the unique equilibrium growth rate is g= γ.

PROOF OF g= γ IN PROPOSITION 1: To show that there is no stationary equilibrium
with g < γ and η > 0, we construct a proof by contradiction: (1) assume there is some
constant g < γ which is the optimal growth rate; (2) use the constant g to calculate the
expectation of the stationary productivity distribution; (3) show that the mean cannot be
stationary when normalized relative to the adoption costs, and hence the g(t) cannot have
been an optimal choice.

Prior to finding the evolution of the moments, we need to be careful of exactly where
agents are removed from the distribution, so replace the S in the CDF with the Heaviside
function removing at the threshold log(M(t)/M(t))= 0, that is, SH(z). Take the normal-
ized version in (53) and (54) and instead work in pdfs in order to later take a Laplace
transformation. We maintain the assumption of a constant g and S with draws from the
unconditional F(t� ·). Use that the derivative of the Heaviside is the Dirac delta function,
δ(·), to find

∂tf�(t� z)= g∂zf�(t� z)+ (S − λ� −η)f�(t� z)+ (S + λh)fh(t� z)
− Sδ(z)+ηδ(z− z̄)� (88)

∂tfh(t� z)= (g− γ)∂zfh(t� z)+ λ�f�(t� z)− (λh +η)fh(t� z)	 (89)

After differentiating, we have the Dirac delta function, δ(z), in (88) to remove those
adopting agents at the threshold (which is normalized to z = 0), and the insertion of leap-
frogging firms at z̄ with arrival rate η.

Taking inspiration from Gabaix, Lasry, Lions, and Moll (2016), use the bilateral Laplace
transform on the z variable to the new ξ space, such that Fi(t� ξ) ≡ ∫ ∞

−∞ e
−ξzfi(t� z)dz.

Applying this transform to the ODEs in (88) and (89) gives21

∂tF�(t� ξ)= gξF�(t� ξ)+ (S − λ� −η)F�(t� ξ)

+ (S + λh)Fh(t� ξ)− S +ηe−z̄ξ� (90)

∂tFh(t� ξ)= (g− γ)ξFh(t� ξ)+ λ�F�(t� ξ)− (η+ λh)Fh(t� ξ)	 (91)

21The transformation uses the linearity of the operator and the general formula for the bilateral Laplace
transform of a derivative. In simple notation this can be stated as: L{f ′(z)} = ξF(ξ). The other important
formulas are that L{δ(z− c)} = e−cξ and L{δ(z)} = 1.
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From Gabaix et al. (2016) equation (16), evaluating at ξ = −1 are the moments of the
Z/M(t) distribution. Hence, to be a stationary first moment (for a given z̄), substitute
into a time-invariant (90) and (91) to find

0 = −gF�(t�−1)+ (S − λ� −η)F�(t�−1)+ (S + λh)Fh(t�−1)− S +ηez̄� (92)

0 = −(g− γ)Fh(t�−1)+ λ�F�(t�−1)− (η+ λh)Fh(t�−1)	 (93)

Solve this algebraic system of equations for F�(t�−1) and Fh(t�−1) and then use the
linearity of the Laplace transform to find F(t�−1)=F�(t�−1)+Fh(t�−1):

Et
[
Z/M(t)

]
=F(t�−1)

= g− γ+η+ λh + λ�
(g− S +η)(g− γ+η+ λh)− λl(S − g+ γ−η)

(
ηez̄ − S)	 (94)

Since z̄(t)= z̄(0)+(γ−g)t and g < γ by assumption, limt→∞ z̄(t)= ∞. Therefore, (94)
diverges for any η > 0, proving that the mean of the distribution cannot be stationary if
z̄→ ∞.

To finish the proof by contradiction, recall that the change of variables to z ≡
log(Z/M(t)) was already normalized relative to M(t), and hence is normalized relative
to the adoption cost, ζM(t). Since v�(z) > z, (20) cannot hold with equality at all points.
Therefore, we have the contradiction that the proposed M(t) leading to the g cannot
have been optimal. Q.E.D.

A.5. Common Adoption Threshold for All Idiosyncratic States

This section derives sufficient conditions for heterogeneous firms to choose the same
adoption threshold. It is kept as general as possible to nest both the exogenous and en-
dogenous versions of the model.

PROOF: Allow for some discrete type i, and augment the state of the firm with an ad-
ditional state x (which could be a vector or a scalar). Assume that there is some control
u that controls the infinitesimal generator Qu of the Markov process on type i and, po-
tentially, x.22 Also assume that the agent can control the growth rate γ̂ at some cost. The
feasibility set of the controls is (u� γ̂) ∈ U(t� i� z�x). The cost of the controls for adop-
tion and innovation have several requirements for this general property to hold: (a) the
net value of searching, vs(t), is identical for all types i, productivities z, and additional
state x, (b) the minimum of the cost function is 0 and in the interior of the feasibility
set: min(γ̂�u)∈U(t�i�z�x) c(t� z� γ̂� i� x�u)= 0� for all t� x� i; and (c) the value of a jump to the
frontier, v̄(t), is identical for all agent states (e.g., v̄(t)= v�(t� z̄(t))= vh(t� z̄(t))).23

22Ordering the states as {l�h}, the infinitesimal generator for this continuous-time Markov chain is
Q = [ −λ� λ�

λh −λh
]
, with adjoint operator Q∗. The KFE and Bellman equations can be formally derived using

these operators and the drift process.
23Without this requirement, firms may have differing incentives to “wait around” for arrival rates of jumps

at the adoption threshold. A slightly weaker requirement is if the arrival rates and value are identical only at
the threshold: η(t�0� ·) and v̄(t�0� ·) are idiosyncratic states.
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Let flow profits be potentially type-dependent, πi(t� z�x), but require that π(t�0) ≡
πi(t�0�x) is identical for all i and x. Then, the normalization of the firm’s problem gives
the following set of necessary conditions:(

r − g(t))vi(t� z�x)
= max

(γ̂�u)∈U(·)

{
πi(t� z�x)− c(t� z� γ̂� i� x�u)+ (γ̂− g)∂vi(t� z�x)

∂z

+ ∂vi(t� z�x)

∂t
+ ei ·Qu · v(t� z�x)+η(

v̄(t)− vi(t� z�x)
)}
� (95)

vi
(
t� z(t� i� x)�x

) = vs(t)� (96)

∂vi
(
t� z(t� i� x)�x

)
∂z

= 0� (97)

where z(t� i� x) is the normalized search threshold for type i and additional state x. To
prove that these must be identical, we will assume that z(t� i� x)= 0 for all types and addi-
tional states, and show that this leads to identical necessary optimal stopping conditions.
Evaluating at z = 0,

vi(t�0�x)= vs(t)� (98)

∂vi(t�0�x)
∂z

= 0	 (99)

Note that equations (98) and (99) are identical for any i and x. Substitute equations (98)
and (99) into equation (95) to obtain(

r − g(t))vs(t)= max
(γ̂�u)∈U(·)

{
π(t�0)− c(t� z� γ̂� i� x�u)

+ ei ·Qu · vs(t)+η(
v̄(t)− vs(t)

) + v′
s(t)

}
	 (100)

Since in order to be a valid intensity matrix, all rows in Qu add to 0 for any u, the last term
is 0 for any i or control u:(

r − g(t))vs(t)= max
(γ̂�u)∈U(·)

{
π(t�0)− c(t� z� γ̂� i� x�u)+ v′

s(t)+η(
v̄(t)− vs(t)

)}
	 (101)

The optimal choice for any i or x is to minimize the costs of the γ̂ and u choices. Given
that γ̂ only shows up as a cost, and our assumption that the cost at the minimum is 0 and
is interior, (

r − g(t))vs(t)= π(t�0)+ v′
s(t)+η(

v̄(t)− vs(t)
)

for all i	 (102)

Therefore, the necessary conditions for optimal stopping are identical for all i� x� z, con-
firming our guess. Furthermore, equation (102) provides an ODE for vs(t) based on ag-
gregate g(t) and v̄(t) changes. Solving this in a stationary environment gives an expression
for vs in terms of equilibrium g, v̄ and the common π(0):

v(0)≡ vs = π(0)+ηv̄
r − g+η 	 (103)
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Furthermore, note from equation (32) that π(0)= 1 for all variations of the model in the
body of the paper. Q.E.D.

A.6. Limit of Draw Arrival Process

The following is a heuristic derivation of the law of motion and cost function for adop-
tion which yields a conditional draw above the firm’s adoption threshold.

Instead of instantaneous draws, assume a firm choosing to adopt has an arrival rate of
λ̄ > 0 of opportunities. While attempting to adopt, they pay a normalized flow cost of ζλ̄.
Note that we are scaling the flow cost by the arrival rate in order to take the limit and
have a finite expected value of search costs.

Furthermore, assume that the firm draws unconditionally from the z distribution in the
economy (rather than simply those above their current threshold), and starts with an �
type. In the stationary equilibrium, as all agents start low after adoption, searching firms
accept a draw if they get above the normalized cutoff of 0. The proof will construct a limit
where agents get a successful draw above 0 in any infinitesimal time period, and hence
draw from the conditional distribution of z ≥ 0.

Define F�λ(z) and Fhλ(z) to be the cdfs of agents in the z < 0 region. As firms in the re-
gion F�λ(z) are otherwise identical, define the mass of searching agents as F�λ(0). Assume
that agents have an unconditional draw of all z within the economy; then, conditional on
a draw, the probability of escaping the F�λ(0) mass is (1 − F�λ(0) − Fhλ(0)). It is easily
shown that the the arrival rate of successful draws is then λ̄(1 − F�λ(0) − Fhλ(0)). The
distribution of waiting times until the first success is an exponential distribution with this
parameter. The survivor function is therefore: e−λ̄(1−F�λ(0)−Fhλ(0))t . Due to the total mass of
1, F�λ(0)+ Fhλ(0)) ∈ (0�1), so the survivor function is decreasing in t. F�λ(0) is indepen-
dent of the λ̄ arrival rate when taking limits as no agents enter this region from successful
searches. Taking the limit for any t, limλ̄→∞ e−λ̄(1−F�λ(0)−Fhλ(0))t = 0. Therefore, in the limit
in equilibrium, F�λ(0)= 0 as measure 1 agents get a successful draw in any strictly positive
interval. The same arguments can be used to explain why Fhλ(0)= 0.

To ensure that the expected search costs in this limit are finite, calculate the present dis-
counted value of flow payments until the first success. This is the exponential distribution
with parameter λ̄(1 − F�λ(0)− Fhλ(0)) and flow cost ζλ̄:

E[search costs]

=
∫ ∞

0

(∫ t

0
ζλ̄e−rs ds

)
λ̄
(
1 − F�λ(0)− Fhλ(0)

)
e−λ̄(1−F�λ(0)−Fhλ(0))t dt (104)

= λ̄ζ

r + λ̄(1 − F�λ(0)− Fhλ(0)
) 	 (105)

Take the limit and use the result that F�λ(0) and Fhλ(0) converge to show

lim
λ̄→∞

E[search costs] = ζ	 (106)

Therefore, in the limit, the model can have draws directly from above the current thresh-
old, with measure 0 remaining behind, and a cost for an instantaneous adoption of ζ.
Since the flow of adopters is of measure 0, whether the draw is from the conditional or
unconditional distribution is irrelevant.
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APPENDIX B: ENDOGENOUS MARKOV INNOVATION

This builds on the previous section to add additional derivations for the case in which
firms choose to invest in innovation. For brevity, any equations that remain identical will
be left out of the discussion.

Keep in mind that two things that change with endogenous innovation are the growth
rate in the innovation state, that is, γ→ γ(·), and the profit function due to licensing, that
is, ez → π(z).

B.1. Stationary BGP With Endogenous Innovation

PROOF OF PROPOSITIONS 3 AND 4 : To create a stationary solution for the value func-
tion, define a change of variables,24

wi(z)≡ e−zv′
i(z)	 (107)

From (36) and (37),

w�(0)=wh(0)= 0	 (108)

Differentiate (107) and reorganize:

e−zv′′
i (z)=w′

i(z)+wi(z)	 (109)

Take the first-order necessary condition of the Hamilton–Jacobi–Bellman equation in
(35), and reorganize:

γ(z)= χ

2
e−zv′

h(z)	 (110)

Substitute this back into (35) to get a nonlinear ODE:

(r − g)vh(z)= π(z)− gv′
h(z)+ χ

4
e−zv′

h(z)
2 + λh

(
v�(z)− vh(z)

)
+η(

v�(z̄)− vh(z)
)
	 (111)

Differentiate (34),

(r − g)v′
�(z)= π ′(z)− gv′′

� (z)+ λ�
(
v′
h(z)− v′

�(z)
) −ηv′

�(z)	 (112)

Multiply (112) by e−z and use (107) and (109) and (46):(
r + λ� +η− (1 −ψ)gF ′(0)

)
w�(z)= 1 − gw′

�(z)+ λ�wh(z)	 (113)

Note that using (109),

e−z∂z
(
e−zv′

h(z)
2
) = 2e−zv′′

h(z)e
−zv′

h(z)− (
e−zv′

h(z)
)2

(114)

= 2wh(z)w′
h(z)+wh(z)2	 (115)

24Our approach is to normalize and then substitute the FOC of the HJBE into the Bellman equation to
form a nonlinear ODE, which we can solve numerically using collocation methods. An alternative approach
to solving the HJBE numerically might be to use upwind finite difference methods as in Achdou, Han, Lasry,
Lions, and Moll (2021) or Perla, Tonetti, and Waugh (2021).
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Differentiate (111), multiply by e−z , and use (107), (109) and (115) and (46):

(r + λh +η)wh(z)= 1 −
(
g− χ

2
wh(z)

)
w′
h(z)

+ (
λh + (1 −ψ)gF ′(0)

)
w�(z)+ χ

4
wh(z)

2	 (116)

From (110),

γ(z)= χ

2
wh(z)� (117)

g≡ χ

2
wh(z̄)	 (118)

Q.E.D.

PROOF OF PROPOSITION 4 : For the case where η→ 0, and z̄→ ∞, we can check the
asymptotic value in (107):

lim
z→∞

wi(z)= ci	 (119)

To find an upper bound on g, note that as wi(z) is increasing, the maximum growth rate is
as z̄→ ∞. In the limit, limz→∞w′

i(z)= 0 as wi(z) have been constructed to be stationary.
Furthermore, note that the maximum g from (118) is

g= lim
z̄→∞

χ

2
wh(z̄)= χ

2
ch	 (120)

Therefore, looking at the asymptotic limit of (113) and (116),(
r + λ� +η− (1 −ψ)χ

2
chF

′(0)
)
c� = 1 + λ�ch� (121)

(r + λh +η)ch = 1 +
(
λh + (1 −ψ)χ

2
chF

′(0)
)
c� + χ

4
c2
h	 (122)

Given an F ′(0), (121) and (122) provide a quadratic system of equations in cl and ch—and
ultimately g through (120). While analytically tractable given an F ′(0), this quadratic has
a complicated solution—except if ψ= 0. For that case, define

λ̄≡ r +η+ λ� + λh
r +η+ λ� 	 (123)

Then, an upper bound on the growth rate with ψ= 1 and η> 0 is

g < λ̄(r +η)
[

1 −
√

1 − χ

λ̄(r +η)2

]
� (124)

where if η= 0, the unique solution is

g= λ̄r
[

1 −
√

1 − χ

λ̄r2

]
� (125)
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where a necessary condition for an interior equilibrium is

r >

√
χ

λ̄
	 (126)

For the log utility case, substitute r = ρ+ g and (123) into (125) to yield (45). Q.E.D.

B.2. Bargaining Derivation

PROOF OF PROPOSITION 2 : From standard Nash bargaining, with a total surplus value
of v�(z), let v̂ be the proportion of the surplus obtained by the licensee and v�(z)− v̂ be the
proportion obtained by the licensor. As is apparent in (128), if ψ= 1, then the technology
is adopted for free and the licensee gains the entire value such that v̂(z)= v�(z).

The timing is that the adopting firm first pays the adoption cost and then, upon the
realization of the match, negotiations over licensing commence:

arg max
v̂

{(
v̂− v(0))ψ(v�(z)− v̂)1−ψ}

	 (127)

Solving for the surplus split, the value for a licensee that matches a firm with productivity
z is

v̂(z)= (1 −ψ)v(0)+ψv�(z)� (128)

while the licensor gains

v�(z)− v̂(z)= (1 −ψ)(v�(z)− v(0))	 (129)

There is an equal probability of adopting from any licensor and a unit measure of firms.
Thus, the flow of adopters engaging any licensing firm is just the flow of adopters S =
S� + Sh,

π(z)= ez + gF ′
�(0)+ (

g− γ(0))F ′
h(0)︸ ︷︷ ︸

Amount of Licensees

(1 −ψ)(v�(z)− v(0))︸ ︷︷ ︸
Profits per Licensee

	 (130)

Since the surplus split does not introduce state dependence to the cost of adopting,
the smooth-pasting condition is unchanged. However, since adopters may not gain the
full surplus from the newly adopted technology due to licensing costs, the value-matching
condition takes bargaining into account. Adapting (20), the value-matching condition is

v(0)= 1
ρ

=
∫ ∞

0

[
ψv�(z)+ (1 −ψ)v(0)]︸ ︷︷ ︸

Surplus with Licensing

dF(z)− ζ	 (131)

Rearranging, the value-matching condition is identical to that previously derived in (20),
but with a proportional increase in the adoption cost:

v(0)= 1
ρ

=
∫ ∞

0
v�(z)dF(z)− ζ

ψ
	 (132)

Q.E.D.
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TABLE I

SUMMARY OF PARAMETER VALUES

Parameters Value/Target Calibration

{λ��λh} {0	533074�1	12766} Matches estimation of 2 state Markov transition matrix for firm
growth rates using Compustat with firms in SIC 2000-3999. Model
is not sensitive to these parameters, as long as they are not too low.

ψ [0	5�1	0] with 0	95 baseline Matches median 5% royalties of large firms reported from
RoyaltySource in Kemmerer and Lu (2012).

ρ 0	01 Target interest rate r = 	03 when g= 0	02.
{χ�ζ} g= 0	02 and α= 2	12 Targets 2% growth rate, and an underlying tail parameter of the

firm size distribution of 1	06 (which translates to α= 2	12 using
the rough adjustment implied by monopolistic competition). Note:
The growth rates are a function of ψ and other parameters which
are calibrated separately.

{z̄�η} z̄ ∈ [0	651�∞] If η≈ 0, then z̄ is set large enough for numerical stability to
approximate ∞ (keeping in mind that ez̄ is the actual multiplier
on productivity of the frontier, so z̄ = 3	0 translates to a ratio of
productivity of the frontier to the threshold of 20	1).

APPENDIX C: ROUGH CALIBRATION PARAMETER VALUES

See Table I for a summary of the parameter values used in the numerical examples.
We set γ = 0	02 to target a 2 percent growth rate and ρ= 0	01 to generate a real interest

rate of 3 percent.
Transition rates λh and λ� are chosen to roughly match firms’ growth rates, with firms

growing faster than 5 percent annually labeled h-types and all other firms labeled �-types.
While the transition rates are sensitive to the h-threshold growth rate, all resulting numer-
ical analysis is unchanged by wide variation in this threshold, as all calibrated transition
rates are high enough to suggest that there is little persistence in either state and that the
process essentially acts like i.i.d. growth rates.

Where appropriate, we target an approximate tail index of α= 2	12, which corresponds
to a tail parameter of 1	06 in the size or profits distribution used in Luttmer (2007) with
a typical markup. Since the model is not sensitive to the tails, this is not a sensitive pa-
rameter but provides some discipline when jointly choosing the adoption and innovation
costs.

We use z̄ = 1	61 (i.e., the frontier to minimum productivity ratio is 5). This ratio is
larger than the z̄ = 0	651 (1.92 ratio in levels) documented by Syverson (2011) between
the top and bottom decile within narrowly defined industries, and is closer to the 5:1 ratio
found in Hsieh and Klenow (2009) in India and China. The qualitative results are not
strongly driven by this fact, as we look across various z̄ levels.
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