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4 Concavity and sufficient parameter restrictions

Define the maximized Hamiltonian Ĥ (x, λ) ≡ maxγ,sH (x, s, γ, λ), where the Hamiltonian, H, is

H (x, s, γ, λ) = ln(x) + λxσγ + ln(B − s− γ) + λx
(

c
m
(1− xm)s− g

)

.

Lemma 1. The maximized Hamiltonian, Ĥ (x, λ), is concave in x if m ≥ −1 and c
σ
< m+ 2.

Note that both conditions in the Lemma above restrict the efficiency of technology diffusion.

Proof. Differentiating H (x, s, γ, λ) shows

Hss = −
1

(B − s− γ)2
; γ = 0, (1)

Hsx = c
m
λ (1− (1 +m)xm) ; γ = 0, (2)

Hxx = −
1 + c(1 +m)λsx1+m

x2
; γ = 0, (3)

Hγγ = −
1

(B − s− γ)2
; s = 0, (4)

Hγx = σλ; s = 0, (5)

Hxx = −x−2; s = 0. (6)

Over the innovation-only region characterized by x > x∗, γ (x, λ) > 0, so we can compute ∂γ
∂x

from the

first order conditionHγ = 0. Then, by the envelope condition, dĤ
dx

= Hx+Hγ
∂γ
∂s

and d2Ĥ
dx2 = Hxx+Hxγ

∂γ
∂s
,

which must be non-positive to assert the concavity of Ĥ (x, λ) in x. Thus, the concavity of Ĥ (x, λ) in the

innovation-only region follows if d2Ĥ
dx2 = Hxx+Hxγ

∂γ
∂x

= Hxx−
(Hxγ)

2

Hγγ
≤ 0, since γ > 0 and, thus, Hγ = 0.

Therefore, in the region c
mσ

(1− xm) < 1 where s = 0 and γ > 0, we have Hγγ = − (B − γ)−2 < 0,
Hxx = −x−2 < 0, and Hγx = σλ > 0. Thus,

Hxx −
(Hγx)

2

Hγγ
= −x−2 + (B − γ)2 (σλ)2 (7)

= −x−2 +
(σλ)2

(zσλ)2
= 0. (8)

This is enough to establish the required concavity over the innovation-only region (x∗, 1) in which s = 0,
and, together with the first order optimality conditions, establishes the optimal policy in the region
where γ(x, λ) > 0 and s = 0.
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Establishing concavity in the complimentary region of x < x∗, in which s ≥ 0 and γ = 0, is more
complicated. Since γ = 0 in this region, either s = 0 over the interior of a sub-interval where ∂s

∂x
= 0

or s > 0 so that ∂s
∂x

can be computed from the first order condition Hs = 0. So, either Hs = 0 or
∂s
∂x

= 0. Then, by the envelope condition, dĤ
dx

= Hx +Hs
∂s
∂x

and d2Ĥ
dx2 = Hxx +Hxs

∂s
∂x
, which must be

non-positive to assert the concavity Ĥ (x, λ). The concavity of Ĥ (x, λ) in that region will then follow if
d2Ĥ
dx2 = Hxx +Hxs

∂s
∂x

= Hxx −
(Hxs)

2

Hss
< 0 if Hs = 0 or, d2Ĥ

dx2 = Hxx if s is in the interior of a sub-interval
where s = 0. We have:

Hss = −
1

(B − s)2
; γ = 0, (9)

Hsx = c
m
λ (1− (1 +m)xm) ; γ = 0, (10)

Hxx = −
1 + c(1 +m)λsx1+m

x2
; γ = 0. (11)

Therefore we need Q = Hxx −
(Hsx)

2

Hss
< 0. Evaluating we obtain:

Q = −
1 + c(1 +m)λsx1+m

x2
+
(

c
m
λ (1− (1 +m)xm)

)2
(B − s)2 . (12)

The first order condition for s in the region x < x∗ is:

1

B − s
≥ λx

c

m
(1− xm) , (13)

B − s ≤
(

λx
c

m
(1− xm)

)

−1
, (14)

(B − s )2 ≤
(

λx
c

m
(1− xm)

)

−2
. (15)

From Eq. (12), Ĥ(x, λ) is concave if Q < 0 and, since x > 0, Ĥ(x, λ) is concave if Qx2 < 0. Using the
FOC shows:

Qx2 = −
(

1 + c(1 +m)λsx1+m
)

+ x2
(

c
m
λ (1− (1 +m)xm)

)2
(B − s)2 (16)

≤ −
(

1 + c(1 +m)λsx1+m
)

+ x2
(

c
m
λ (1− (1 +m)xm)

)2
(

λx
c

m
(1− (x)m)

)

−2
. (17)

Then, Ĥ (x, λ) is concave in x if

−
(

1 + c(1 +m)λsx1+m
)

+ x2
(

c
m
λ (1− (1 +m)xm)

)2
(

λx
c

m
(1− (x)m)

)

−2
< 0,

x2
(

c
m
λ (1− (1 +m)xm)

)2
(

λx
c

m
(1− xm)

)

−2
< 1 + c(1 +m)λsx1+m. (18)

Since 1 + c(1 + m)λsx1+m ≥ 1 for m ≥ −1, we can obtain sufficient conditions that ensure Q < 0 by
checking for conditions under which

x2
(

c
m
λ (1− (1 +m)xm)

)2
(

λx
c

m
(1− xm)

)

−2
< 1

in the region x < x∗. Reorganizing Eq. (18) shows that

(

(

c
m
λ (1− (1 +m)xm)

)

(

λ c
m
(1− xm)

)

)2

< 1 ≤ 1 + c(1 +m)λsx1+m, (19)

(

1−
mxm

1− xm

)2

< 1. (20)
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Therefore, we need

− 1 < 1−
mxm

1− xm
< 1. (21)

The inequality on the right holds, since mxm

1−xm > 0, for any m 6= 0, so we focus on

− 1 < 1−
mxm

1− xm
. (22)

First, if m < 0 then

xm − 1 > 1− xm −mxm, (23)

(2 +m)xm > 2. (24)

Note that (2 +m)xm is decreasing in x for 0 > m > −2. Since in this region x is bounded above by x∗,

(2 +m)xm is bounded below by (2 +m)x∗m. Substituting x∗ =
(

1− mσ
c

) 1

m into the above yields

(2 +m)
(

1−
mσ

c

)

> 2, (25)

m
(

1− 2
σ

c
−

mσ

c

)

> 0, (26)

1− 2
σ

c
−

mσ

c
< 0, (27)

c

σ
< m+ 2. (28)

Similarly, if m > 0 then

xm − 1 < 1− xm −mxm (29)

(2 +m)xm < 2. (30)

Note that (2 + m)xm is increasing in x for m > 0. Since in this region x is bounded above by x∗,

(2 +m)xm is bounded above by (2 +m)x∗m. Substituting x∗ =
(

1− mσ
c

) 1

m into the above yields

(2 +m)
(

1−
mσ

c

)

< 2, (31)

m
(

1− 2
σ

c
−

mσ

c

)

< 0, (32)

1− 2
σ

c
−

mσ

c
< 0, (33)

c

σ
< m+ 2. (34)

Thus, Ĥ (x, λ) is concave in x if m ≥ −1 and c
σ
< m+ 2.

5 Proofs for Hicks-neutral technical change

Note that fixing θ̄ ≡ σ̄
c̄
, defining σ = Aσ̄, c = Ac̄, and taking derivatives with respect to A is mathemat-

ically equivalent to varying c and keeping θ̄ constant by varying σ. For mathematical convenience, we
will use this alternative approach to the proofs.

5.1 Proof of dx̄
dA

< 0

Proof. Differentiating x̄ = q̄
1

m yields
dx̄

dc
=

1

m
q̄

1

m
−1dq̄

dc
. (35)
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Differentiating q̄ defined in Eq. (BPT.A.22):

For m > 0 the smaller root, q̄1, is the unique stationary root.

dq̄

dc
=

1

2

m2r

Bc2
−

1

4

(

(

2 +mθ̄ (m− 1)−
m2r

Bc

)2

− 4
(

1−mθ̄
)

)

−.5
(

2

(

2 +mθ̄ (m− 1)−
m2r

Bc

)(

m2r

Bc2

))

,

=
1

2

m2r

Bc2











1−
1

2

(

2
(

2 +mθ̄ (m− 1)− m2r
Bc

))

(

(

2 +mθ̄ (m− 1)− m2r
Bc

)2
− 4

(

1−mθ̄
)

).5











,

<
1

2

m2r

Bc2











1−
1

2

(

2
(

2 +mθ̄ (m− 1)− m2r
Bc

))

(

(

2 +mθ̄ (m− 1)− m2r
Bc

)2
).5











,

=
1

2

m2r

Bc2



1−
1

2

(

2
(

2 +mθ̄ (m− 1)− m2r
Bc

))

(

2 +mθ̄ (m− 1)− m2r
Bc

)



 ,

=
1

2

m2r

Bc2
(1− 1) = 0.

Hence for m > 0, dq̄
dc

< 0 which, together with Eq. (35), proves dx̄
dc

< 0.

For m < 0 the larger root, q̄2, is the unique stationary root.

dq̄

dc
=

1

2

m2r

Bc2
+

1

4

(

(

2 +mθ̄ (m− 1)−
m2r

Bc

)2

− 4
(

1−mθ̄
)

)

−.5
(

2

(

2 +mθ̄ (m− 1)−
m2r

Bc

)(

m2r

Bc2

))

,

=
1

2

m2r

Bc2
+

1

4

(

(

2

(

1 +
m2

c

(

σ −
r

B

)

+
(

1−
mσ

c

)

))2

− 4
(

1−
mσ

c

)

)

−.5

×

(

2

(

1 +
m2

c

(

σ −
r

B

)

+
(

1−
mσ

c

)

)(

m2r

Bc2

))

Using results from Appendix BPT.B.1,
(

1 + m2

c

(

σ − r
B

)

+
(

1− mσ
c

)

)

is the sum of roots, which is pos-

itive and
(

2
(

1 + m2

c

(

σ − r
B

)

+
(

1− mσ
c

)

))2
− 4

(

1− mσ
c

)

is the discriminant, which is positive. Hence

for m < 0, dq̄
dc

> 0 which, together with Eq. (35), proves dx̄
dc

< 0.

Thus dx̄
dc

< 0 for constant θ, which implies dx̄
dA < 0.

5.2 Proof of ds̄
dc

> 0

The total derivative of s̄ with respect to c is

Proof.

ds̄

dc
=

∂s̄

∂c
+

∂s̄

∂q̄

dq̄

dc
(36)
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Calculating ∂s̄
∂q̄

shows that

s̄ =
B − rm

c
(1− q̄)−1

(

1 +mq̄ (1− q̄)−1
) =

B
(

1
m
(1− q̄)

)

− r
c

1
m
(1− q̄) + q̄

> 0, (37)

∂s̄

∂q̄
= −

1

c

m

(mq̄ − q̄ + 1)2
(r +Bc−mr) . (38)

Thus,

ds̄

dc
=

∂s̄

∂c
+

∂s̄

∂q̄

dq̄

dc
, (39)

=
r
c2

1
m
(1− q̄) + q̄

−
1

c

m

(mq̄ − q̄ + 1)2
(r +Bc−mr)

dq̄

dc
, (40)

=
1

c2
rm

(1− q̄) +mq̄
−

1

c

m

(mq̄ − q̄ + 1)2
(r +Bc−mr)

dq̄

dc
, (41)

=
1

c

m

(mq̄ − q̄ + 1)

(

r

c
−

(r +Bc−mr)

(1− q̄) +mq̄

dq̄

dc

)

. (42)

There is no θ̄ in the equation for s̄ (Eq. BPT.37), but this productivity ratio is built into the dq̄
dc

term
by taking θ = σ

c
constant.

From Appendix 5.1, if m > 0, then q̄ < 1 and dq̄
dc

< 0. Then,

ds̄

dc
> 0 if 0 < m ≤ 1, or better, if r (1−m) +Bc > 0. (43)

From Appendix 5.1, if m < 0, then q̄ > 1 and dq̄
dc

> 0. Then (1− q̄) +mq̄ < 0. So,

ds̄

dc
> 0. (44)

6 Comparative dynamics for m

6.1 q̄(m) is decreasing

To find dq̄
dm , take the total derivative of Eq. (BPT.A.21) with respect to q̄ and m:

2q̄dq̄ −

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)

dq̄ −

(

−
σ

c
+

2m

c

(

σ −
r

B

)

)

q̄dm−
σ

c
dm = 0,

(

2q̄ −

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

))

dq̄ −

((

−
σ

c
+

2m

c

(

σ −
r

B

)

)

q +
σ

c

)

dm = 0.

Reorganizing shows that
dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c
(1− q̄)

2q̄ −
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

)

) . (45)

Lemma 2.
dq̄
dm

≤ 0

5



Proof. We analyze the cases of m > 0 and m < 0 separately.

Case m > 0: The unique stable root is q̄1.

q̄1 =
1

2





(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)

−

(

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)2

− 4
(

1−
(mσ

c

))

)0.5


 ,

dq̄

dm
=

2m

c

(

σ −

r

B

)

q̄ + σ

c
(1− q̄)

(

(

2−
(

mσ

c

)

+ m2

c

(

σ −

r

B

)

)

−

(

(

2−
(

mσ

c

)

+ m2

c

(

σ −

r

B

)

)

2

− 4
(

1−
(

mσ

c

))

)

0.5
)

−

(

2−
(

mσ

c

)

+ m2

c

(

σ −

r

B

)

)

,

dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c
(1− q̄)

−

(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

)

)2
− 4

(

1−
(

mσ
c

))

)0.5 < 0.

since, as we have shown, the discriminant
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

)

)2
− 4

(

1−
(

mσ
c

))

> 0.

Case m < 0: The unique stable root is q̄2.

q̄2 =
1

2





(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)

+

(

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)2

− 4
(

1−
(mσ

c

))

)0.5


 ,

dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c
(1− q̄)

2q̄ −
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

)

) ,

dq̄

dm
=

2m

c

(

σ −

r

B

)

q̄ + σ

c
(1− q̄)

(

(

2−
(

mσ

c

)

+ m2

c

(

σ −

r

B

)

)

+

(

(

2−
(

mσ

c

)

+ m2

c

(

σ −

r

B

)

)

2

− 4
(

1−
(

mσ

c

))

)

0.5
)

−

(

2−
(

mσ

c

)

+ m2

c

(

σ −

r

B

)

)

,

dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c
(1− q̄)

(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

)

)2
− 4

(

1−
(

mσ
c

))

)0.5 < 0,

since, in this case, m < 0 and q̄ > 1.

6.2 Parameter restrictions for dx̄
dm

Now consider x̄ = q̄
1

m noting that 0 < x̄ < 1. The derivative of X̄ with respect to m is

dx̄

dm
= −

1

m2
q̄

1

m ln q̄ +
1

m
q̄

1

m
−1 dq̄

dm
,

dx̄

dm
=

1

m2
q̄

1

m

(

m

q̄

dq̄

dm
− ln q̄

)

. (46)

As can be seen from Eq. (46), if the following inequality holds, then x̄(m) is decreasing in m:

0 >
m

q̄

dq̄

dm
− ln q̄. (47)

Here, we can use the analytic expressions for dq̄
dm

from Eq. (45) and q̄ from Eq. (BPT.A.22).

We suspect, but have not been able to analytically show, that Assumptions 1, 2, and 3 imply this
restriction always holds. Numerically, this inequality constraint has been satisfied for all of the parameter
values we have tried that satisfy Assumptions 1, 2, and 3.

6



6.3 Parameter restrictions for ds̄
dm

We want to calculate the derivative of s̄ with respect to m. Since s̄ is a function of other equilibrium
values,

ds̄

dm
=

∂s̄

∂m
+

∂s̄

∂q̄

dq̄

dm
. (48)

These partials are taken using the expression for s̄(m) provided in Eq. (BPT.37):

∂s̄

∂m
=

1

c
(r +Bcq̄)

q̄ − 1

(mq̄ − q̄ + 1)2
, (49)

∂s̄

∂q̄
= −

1

c

m

(mq̄ − q̄ + 1)2
(r +Bc−mr) . (50)

An expression for dq̄
dm < 0 is given in Lemma 2. Combining the elements of the total derivative in Eq.

(48) yields,

ds̄

dm
=

1

c
(r +Bcq̄)

q̄ − 1

(mq̄ − q̄ + 1)2
−

(

1

c

m

(mq̄ − q̄ + 1)2
(r (1−m) +Bc)

)

dq̄

dm
. (51)

Hence, we can get a parameter constraint on ds̄
dm

< 0 by substituting for q̄ from Eq. (BPT.A.22) and for
dq̄
dm from Eq. (45) into the following inequality:

0 <
1

c
(r +Bcq̄)

q̄ − 1

(mq̄ − q̄ + 1)2
−

(

1

c

m

(mq̄ − q̄ + 1)2
(r (1−m) +Bc)

)

dq̄

dm
. (52)

We suspect, but have not been able to analytically show, that Assumptions 1, 2, and 3 imply this
restriction always holds. Numerically, this inequality constraint has been satisfied for all of the parameter
values we have tried that satisfy Assumptions 1, 2, and 3.
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