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Appendix A Solving for the BGP Equilibrium

References with no prefix refer to this Technical Appendix, while those with a prefix of PT. refer
to equations in the main paper.

A.1 The Firm Problem

This version of the firm problem includes taxes and subsidies and is featured in the constrained
planner problem found in Section PT.4. When taxes and subsidies are zero, i.e. τ = ς = 0, this
becomes the firm problem developed in Section PT.2.3 and throughout the rest of the main paper.

The following extends the firm’s problem in equation PT.2 with a constant proportional tax
on production, 0 ≤ τ < 1, and a constant proportional search subsidy, 0 ≤ ς < (1 − τ). Al-
though searchers do not produce, they may receive positive period profits from the search subsidy,
depending on the value of ς.1

Vt(z) = max

{

(1− τ)z + 1
1+rt

Vt+1(z), ςz + 1
1+rt

∫ ∞

mt+1

Vt+1(z
′) ft(z′)

1−Ft(mt+1)
dz′

}

(A.1)

Define the gross value of search, before any costs/subsidies, at time t as

Wt ≡
1

1+rt

∫ ∞

mt+1

Vt+1(z
′)

ft(z
′)

1− Ft(mt+1)
dz′ (A.2)

Define the net value of search as ςz +Wt.

A.2 Guesses to be Verified

Make the following guesses, which will be verified:

1. The Pareto distribution will fulfill the BGP conditions, including Scale Invariance as described
in Section PT.2.4.2. Given an initial pdf, f0(z;m0, α) = αmα

0 z
−α−1, the distribution will

evolve according to the truncation law of motion in equation PT.4. Given this law of motion
and initial distribution, ft(z) = αmα

t z
−α−1.

2. The reservation productivity will grow geometrically: mt+1 = gmt.

1Another interpretation of ς is that only a fraction, (1 − ς), of production is necessary to pay the cost of search.
Additionally, the model can be solved with proportional costs rather than subsidies, −(1− τ) < ς < 0, if an external
frictionless market is assumed to exist for firms to finance these additional search costs.
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3. The gross value of search grows geometrically from some constant W . Hence, the net value
of search is affine in mt (or linear if ς = 0).

Vt(z) = mtW + ςz, for mt ≤ z ≤ gmt (A.3)

No guesses or assumptions are made on the structure or linearity of Vt(z) for z > gmt.
2 The solution

methodology, following the search literature, solves for firms optimal policies without needing to
solve for Vt.

It is straightforward to prove that the Pareto distribution fulfills the BGP equilibrium require-
ments, such as Scale Invariance in equation PT.6, for any m0. Moreover, given mt+1 = gmt, it can
be shown that Yt+1 = gYt for all mt.

To verify the last 2 guesses, it suffices to solve for constants g and W that are not a function of
mt.

A.3 Detailed Algebra for BGP Proof

Given that Yt+1 = gYt, the interest rate is constant: r = gγ

β − 1. Inserting the Pareto ft(·) and
mt+1 = gmt into equation A.1 to obtain

Vt(z) = max
{

(1− τ)z + 1
1+rVt+1(z),

ςz + 1
1+rα(gmt)

α

∫ ∞

gmt

Vt+1(z
′)z′−α−1dz′

}

(A.4)

Note that with the guess that mt+1 = gmt, the indifference level of productivity at time t is gmt.
Thus,

Vt(gmt) =(1− τ)gmt +
1

1+rVt+1(gmt) (A.5)

=ςgmt +
1

1+rα(gmt)
α

∫ ∞

gmt

Vt+1(z
′)z′−α−1dz′ (A.6)

Using the guess on the affine value of search from equation A.3 with equations A.5 and A.6 gives
two equalities:

mtW + ςgmt =(1− τ)gmt +
1

1+r (gmtW + ςgmt) (A.7)

(1− τ)gmt +
1

1+r (gmtW + ςgmt) =ςgmt +
1

1+rα(gmt)
α

∫ ∞

gmt

Vt+1(z
′)z′−α−1dz′ (A.8)

Use equation A.7 to obtain one equation in W and g

W =

(

1− τ − r
1+r ς

)

g

1− g/(1 + r)
(A.9)

Note that mt has dropped out of the equation, which is part of the verification that W and g are
constants that are independent of the scale of the economy. Rearrange equation A.8 and split the
integral at the indifference point for t+ 1:

(1− τ − r
1+r ς)gmt +

1
1+rgmtW = 1

1+rα(gmt)
α

∫ g2mt

gmt

Vt+1(z
′)z′−α−1dz′

+ 1
1+rα(gmt)

α

∫ ∞

g2mt

Vt+1(z
′)z′−α−1dz′ (A.10)

2In fact, Vt(z) will always be non-linear due to the z dependent option value of future search. Section B uses
the solution to the firm problem to solve for the value function explicitly. Equation B.7 provides an equation and
economic interpretation for Vt(z).
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By the decision rule, firms will search at t+ 1 if z′ ≤ g2mt with value gmtW + ςz′. Thus,

∫ g2mt

gmt

Vt+1(z
′)z′−α−1dz′ =

∫ g2mt

gmt

(
gmtW + ςz′

)
z′−α−1dz′

=
ςgmt

α− 1
(gmt)

−α(1− g1−α) +
gmtW

α
(gmt)

−α(1− g−α)

= gmt(gmt)
−α

(
ς

α− 1
(1− g1−α) +

W

α
(1− g−α)

)

(A.11)

By the decision rule, firms will produce at t+ 1 if z′ > g2mt. Thus,

∫ ∞

g2mt

Vt+1(z
′)z′−α−1dz′ =

∫ ∞

g2mt

(

(1− τ)z′ + 1
1+rVt+2(z

′)
)

z′−α−1dz′ (A.12)

= 1
α−1(1− τ)(g2mt)

1−α + 1
1+r

∫ ∞

g2mt

Vt+2(z
′)z′−α−1dz′

(A.13)

Using the indifference equation at t+ 1, where the reservation productivity is g2mt, yields

Vt+1(g
2mt) =(1− τ)g2mt +

1
1+r

(
g2mtW + ςg2mt

)
(A.14)

=ςg2mt +
1

1+rα(g
2mt)

α

∫ ∞

g2mt

Vt+2(z
′)z′−α−1dz′ (A.15)

Using the equality between equations A.14 and A.15 and rearranging for the integral yields

1
1+rα(gmt)

α

∫ ∞

g2mt

Vt+2(z
′)z′−α−1dz′ = g−αg2mt

(

1− τ − r
1+r ς +

1
1+rW

)

(A.16)

Note that equation A.16 gives the second part of the integral in equation A.13. Combining equations
A.11, A.13, and A.16 with equation A.10 provides an equation independent of value functions:

(1− τ − r
1+r ς)gmt +

1
1+rgmtW = 1

1+rα(gmt)
αgmt(gmt)

−α
(

ς
α−1(1− g1−α) + W

α (1− g−α)
)

+ 1
1+rα(gmt)

α 1
α−1(1− τ)(g2mt)

1−α

+ 1
1+rg

−αg2mt

(

1− τ − r
1+r ς +

1
1+rW

)

(A.17)

Dividing by gmt and simplifying shows that

1− τ − r
1+r ς +

1
1+rW = 1

1+r
α

α−1 ς −
1

1+r
α

α−1 ςgg
−α

+ 1
1+rW − 1

1+rWg−α

+ 1
1+r

α
α−1(1− τ)gg−α

+ 1
1+rgg

−α
(

1− τ − r
1+r ς

)

+ 1
1+rg

−α g
1+rW (A.18)

Multiplying by gα(1 + r) and rearranging yields a second equation in W and g:

(

(1− τ)(1 + r)− ς
(

r + α
α−1

))

gα = g
(

1− τ + (1− τ) α
α−1 − ς α

α−1 − ς r
r+1

)

− (1− g/(1 + r))W

(A.19)

Substituting for W from equation A.9 and simplifying gives

(

(1− τ)(1 + r)− ς
(

r + α
α−1

))

gα = g α
α−1 (1− τ − ς) (A.20)
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Solving for g, we have shown that

g =








1− τ − ς

1− τ − ς
(

r
1+r +

1
1+r

α
α−1

)




1

1 + r

α

α− 1





1
α−1

(A.21)

As mt has dropped out of equations A.21 and A.9, the guesses in Section A.2 of the functional
form Vt(z) = Wmt + ςz for mt ≤ z ≤ gmt and mt+1 = gmt for constant W and g are verified.
Note that W and g are not functions of time or the minimum of support of f0. Intuitively, this
means that the growth rate is independent of the initial scale of the economy, m0, and inductively
it is independent of the scale of the economy for any t since mt = m0g

t. Equation A.21 can be
compared to the solution without taxes or subsidies presented in equation PT.18.

To solve for g entirely in terms of model intrinsics, the growth rate needs to be solved as a system
of equations with the interest rate given by

1

1 + r
= βg−γ (A.22)

Direct substitution of this interest rate into equation A.21 yields an implicit expression for g in
terms of model parameters. For a general α, this implicit equation doesn’t appear to always have
an explicit analytical formula for g, but it can be solved explicitly if ς = 0 or γ = 0. Note that
proportional taxes do not distort growth rates in the absence of subsidies. For ς = 0, as shown in
Proposition PT.1,

g =

(

β
α

α− 1

) 1
γ−1+α

(A.23)

Parameter constraints are needed to ensure that g > 1 and W > 0, as can be seen in equations A.9
and A.21. Given an equilibrium r, the following are sufficient3

1. ς + τ < 1

2. 1− τ − ς
(

r
1+r +

1
1+r

α
α−1

)

> 0

3. 1
1+r

α
α−1 > 1

Appendix B Solving for the Value Function

The firm’s optimal policy is to search at time t if and only if its idiosyncratic productivity is below
the reservation productivity threshold mt+1. Define the number of periods a firm with productivity
z at time t waits before searching as:

ξt(z) ≡ argmin
s∈N

{z ≤ mt+1+s} (B.1)

For example, if a firm at time t has productivity z ≤ mt+1, then the firm searches immediately and
ξt(z) = 0. With a productivity of mt+1 < z ≤ mt+2 then the firm waits one period, etc. If, for
some s, the firm has productivity z = mt+1+s, then the firm is indifferent between waiting for s
and s+ 1 periods before searching.

Recall the gross value of search at period t (before any costs/subsidies) is

Wt =
1

1+rt

∫ ∞

mt+1

Vt+1(z
′)

ft(z
′)

1− Ft(mt+1)
dz′ (B.2)

In sequential space, given a Competitive Equilibrium—F0 and {mt, Vt(·), rt}—and the corre-
sponding {Wt, ξt(·)}, the value function of a firm with productivity z at time t is the discounted
sum of production until search plus the net value of search at time t+ ξt(z).

4 Noting that Wt+ξt(z)

3For the specific case of ς = 0, Proposition PT.1 gives, in closed form, the necessary and sufficient parameter
constraints in terms of intrinsics.

4The convention used is that for b < a,
∑b

a = 0 and
∏b

a = 1.
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already contains the discount term 1
1+rt+ξt(z)

,

Vt(z) = (1− τ)z

ξt(z)−1
∑

s=0

(
s−1∏

i=0

1
1+rt+i

)

+ ςz





ξt(z)−1
∏

i=0

1
1+rt+i



+





ξt(z)−1
∏

i=0

1
1+rt+i



Wt+ξt(z) (B.3)

If the interest rate is constant (e.g., if γ = 0 or if the economy is on a BGP), then the expression
can be simplified further

Vt(z) =

[

(1− τ)1+r
r

(

1−
(

1
1+r

)ξt(z)
)

+ ς
(

1
1+r

)ξt(z)
]

z +
(

1
1+r

)ξt(z)
Wt+ξt(z) (B.4)

= (1− τ)1+r
r z

︸ ︷︷ ︸

Value of production

+
(

1
1+r

)ξt(z) [
ςz +Wt+ξt(z) − (1− τ)1+r

r z
]

︸ ︷︷ ︸

Option value of search

(B.5)

At time t, this function is piecewise linear with kinks at {ms} for all s ≥ t. Where ms < z <
ms+1, the slope of the value function in z is the present discounted value of post-tax production
for ξt(z)− 1 periods plus the value of the search subsidy discounted ξt(z) periods. In equation B.5,
this is interpreted as the value of production in perpetuity plus the option value of search. The
option value of search is the value of receiving, at ξt(z) periods in the future, the subsidy and the
expected value of a new productivity draw minus the lost value of producing with z in perpetuity
after the ξt(z) periods.

It can be shown that for a given t, the option value of search is decreasing in z and asymptotically
0, since for large z the search option is executed far in the future. From equation B.5, as ξ → ∞,
(

1
1+r

)ξt(z)
→ 0. Hence, as long as Wt+ξt(z) does not grow too fast, the option value of search goes to

0 as the waiting time goes to infinity.5 This condition in the balanced growth path will be fulfilled
if in equilibrium 1 + r > g. Therefore, from B.5, the value function is approximately linear and
independent of t for very large z relative to the current minimum of support mt

Vt(z) ≈ (1− τ)1+r
r z, for z ≫ mt (B.6)

Equation B.4 can be simplified further along the balanced growth path, along which mt = m0g
t

and Wt = m0g
tW . Substituting, the value function on the BGP is defined piecewise ∀s ∈ N as

Vt(z) =

{[

(1− τ)1+r
r

(

1−
(

1
1+r

)s)

+ ς
(

1
1+r

)s]

z +
(

1
1+r

)s
m0g

t+sW for z ∈ [m0g
t+s,m0g

t+s+1]

ςz +m0g
tW for z ≤ m0g

t

(B.7)

Appendix C Normalization and Stationarity

A normalized version of the problem can be solved numerically for arbitrary initial conditions.6

C.1 Normalization Definitions

Given an initial condition f0(z) ≡ f(z) and the optimal reservation productivities that characterize
optimal firm policies, {mt+1}, define the following:

5Or equivalently, as z goes to infinity, since ξt(z) is an increasing function.
6This stationary transformation of the model can also be used to numerically solve for model variations where the

law of motion is not a simple truncation. The algorithm and code described in Appendix E are intended to support
these sorts of extensions.
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Normalized productivity level:

z̃ ≡ z
mt

, for z̃ ∈ [1,max support {f} /mt] (C.1)

The support follows from the definition mt ≡ min support {ft} since the law of motion ensures
max support {ft} = max support {f}.

Growth factor of the minimum of support:

gt ≡
mt+1

mt
(C.2)

Normalized value function:

Vt(z) ≡ mtṼt(
z
mt

) (C.3)

Normalized pdf:

ft(z) ≡
1
mt

f̃t(
z
mt

) (C.4)

Integrating the normalized pdf from mt to z gives the normalized cdf:

Ft(z) ≡ F̃t(
z
mt

) (C.5)

Rearranging the normalization in equation C.4 and using z = z̃mt, gives an equivalent transforma-
tion

f̃t(z̃) = mtft(z̃mt) (C.6)

C.2 Normalized Law of Motion

Together, the law of motion from equation PT.4 and equation C.6 generate

ft(z̃mt) =
f(z̃mt)

1− F (mt)
(C.7)

f̃t(z̃) =
mtf(z̃mt)

1− F (mt)
(C.8)

Integrating to find the cdf yields

F̃t(z̃) =

∫ z̃

1

f(z̃′mt)

1− F (mt)
mtdz̃

′ (C.9)

Doing a change of variables for z = z̃mt gives

F̃t(z̃) =
F (z̃mt)− F (mt)

1− F (mt)
(C.10)

Using the law of motion, ft+1(z) = ft(z)
1−Ft(mt+1)

, use z = z̃mt+1 and substitute with equation C.4
and C.5 to obtain

f̃t+1(z̃) = mt+1

1
mt

f̃t(
z
mt

mt+1

mt+1
)

1− F̃t(mt+1/mt)
=

gtf̃t(z̃gt)

1− F̃t(gt)
(C.11)

Thus, the law of motion in the normalized z̃ space is entirely determined by the initial condition,
f̃0(z̃), and the sequence of growth factors, {gt}.

6



Using equation C.8, define the asymptotic normalized distribution as

f̃∞(z̃) ≡ lim
t→∞

mtf(z̃mt)

1− F (mt)
(C.12)

Also, define the asymptotic growth factor of the minimum of support as

g∞ ≡ lim
t→∞

gt (C.13)

As a check that this normalization is stationary for the balanced growth path, use a Pareto ini-
tial condition—f(z) = αmα

0 z
−α−1—and ensure it is constant and equal to the normalized Pareto

distribution for all t:

f̃t(z̃) = mt
αmα

0 (z̃mt)
−α−1

1−
(

1−
(
m0
mt

)α) (C.14)

= αz̃−α−1, z̃ ∈ [1,∞) ∀ t (C.15)

= f̃∞(z̃) = f̃0(z̃) (C.16)

C.3 Normalized Value Functions

Using equation A.1 and substituting the normalized versions of each variable and function gives

mtṼt(
z
mt

) = max
{

(1− τ)z + 1
1+rt

mt+1Ṽt+1(
z

mt+1
),

ςz + 1
1+rt

1

1−F̃t

(mt+1

mt

)

∫ ∞

mt+1

mt+1Ṽt+1

(
z′

mt+1

)
1
mt

f̃t

(
z′

mt

)

dz′

}

(C.17)

Dividing by mt and using z̃ = z
mt

yields

Ṽt(z̃) = max
{

(1− τ)z̃ + 1
1+rt

mt+1

mt
Ṽt+1

(

z̃ mt

mt+1

)

,

ςz̃ + 1
1+rt

mt+1/mt

1−F̃t

(mt+1

mt

)

∫ ∞

mt+1

Ṽt+1

(
z′

mt+1

)
1
mt

f̃t

(
z′

mt

)

dz′

}

(C.18)

Using the change of variables formula
∫ b
a m(n(q))n′(q)dq =

∫ n(b)
n(a) m(s)ds yields7

Ṽt(z̃) = max

{

(1− τ)z̃ + 1
1+rt

gtṼt+1(z̃/gt), ςz̃ +
1

1+rt
gt

1
1−F̃t(gt)

∫ ∞

gt

Ṽt+1(z̃
′/gt)f̃t(z̃

′)dz̃′
}

(C.19)

The indifference point, gt, is the root of the following equation

0 = (1− τ)gt +
1

1+rt
gtṼt+1(1)−

(

ςgt +
1

1+rt
gt

1
1−F̃t(gt)

∫ ∞

gt

Ṽt+1(z̃
′/gt)f̃t(z̃

′)dz̃′
)

(C.20)

If the environment is stationary, then the problem can be written recursively. In that case, there
should exist a g, Ṽ (·), and 1/(1 + r) = βg−γ that solve the following fixed point problem

Ṽ (z̃) = max

{

(1− τ)z̃ + 1
1+rgṼ (z̃/g), ςz̃ + 1

1+rg
1

1−F̃ (g)

∫ ∞

g
Ṽ (z̃′/g)f̃(z̃′)dz̃′

}

(C.21)

7For this change of variables: q = z′, n(·) = ·
mt

, m(·) = Ṽt+1

(

· mt

mt+1

)

f̃(·).
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Some systems may become stationary asymptotically or may be stationary after a change of vari-
ables.

To find the normalized version of the sequence space formulation in equation B.4, define the
normalization of the gross value of search relative to time t as

W̃s|t ≡
Wt+s

mt
(C.22)

Normalize the optimal waiting time until search in equation B.1 such that

ξ̃t(z̃) = argmin
s∈N

{z̃mt ≤ mt+1+s}

= argmin
s∈N

{z̃ ≤ mt+1+s/mt} (C.23)

Note that the argmin is the same after this change of variables: ξ̃t(z̃) = ξt(z).

Since gt ≡ mt+1/mt, mt can be constructed from the sequence of gt as

mt = m0

t−1∏

t′=0

gt′ , t ≥ 1 (C.24)

Define the normalized future indifference points relative to the minimum of support at t as

m̃s|t ≡
s∏

t′=0

gt+t′ , ∀s ≥ 0, t ≥ 0 (C.25)

Note that
{
m̃s|t|s ≥ 0

}
are the locations in the z̃ domain of the kinks in the normalized value

function at time t (e.g. {gt, gtgt+1, . . .}) and

ξ̃t(z̃) = argmin
s∈N

{

z̃ ≤
m0
∏t+s

t′=0 gt′

m0
∏t−1

t′=0 gt′

}

= argmin
s∈N

{
z̃ ≤ m̃s|t

}
(C.26)

If the interest rate is constant, equation B.4 can be used to derive the normalized value function.
Dividing by mt, and using z̃ = z/mt, the normalized value function is

Ṽt(z̃) =

[

(1− τ)1+r
r

(

1−
(

1
1+r

)ξ̃t(z̃)
)

+ ς
(

1
1+r

)ξ̃t(z̃)
]

z̃ +
(

1
1+r

)ξ̃t(z̃)
W̃ξ̃t(z̃)|t

(C.27)

This further reduces for z̃ at future normalized indifference points to

Ṽt(m̃t+1+s|t) =
[

(1− τ)1+r
r

(

1−
(

1
1+r

)s)

+ ς
(

1
1+r

)s]

m̃t+1+s|t +
(

1
1+r

)s
W̃s|t (C.28)

Given {gt,Wt}, equations C.22, C.26, and C.27 combine to deliver the normalized value function.
Along the balanced growth path, gt is constant. Thus,

W̃s|t =
mtg

sW

mt
= gsW (C.29)

W̃0|t = W, ∀ t (C.30)

ξ̃t(z̃) = argmin
s∈N

{
z̃ ≤ gs+1

}
(C.31)

Ṽt(z̃) =

[

(1− τ)1+r
r

(

1−
(

1
1+r

)ξ̃t(z̃)
)

+ ς
(

1
1+r

)ξ̃t(z̃)
]

z̃ +
(

1
1+r

)ξ̃t(z̃)
gξ̃t(z̃)W (C.32)

Since along the balanced growth path these functions are all independent of t, the normalized value
function is constant on the BGP, given by

Ṽ (z̃) =
[

(1− τ)1+r
r

(

1−
(

1
1+r

)s)

+ ς
(

1
1+r

)s]

z̃ +
(

1
1+r

)s
gsW, z̃ ∈ [gs, gs+1] (C.33)

In particular, at the indifference points, the value of a firm is

Ṽ (gs) =
[

(1− τ)1+r
r

(

1−
(

1
1+r

)s)

+ ς
(

1
1+r

)s]

gs +
(

1
1+r

)s
gsW, for s ≥ 0 (C.34)
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C.4 Normalized Production and Interest Rate

Production in period t is

Yt =

∫ ∞

mt+1

zft(z)dz (C.35)

Substituting in the normalized distribution and reorganizing shows

Yt = mt

∫ ∞

mt+1

z
mt

f̃t(z/mt)
1
mt

dz (C.36)

Doing a change of variables in the integral yields

Yt = mt

∫ ∞

gt

z̃f̃t(z̃)dz̃ (C.37)

From the consumer’s optimization problem, the interest rate satisfies

1
1+rt

= β
(
Yt+1

Yt

)−γ

= βg−γ
t

(∫∞
gt+1

z̃f̃t+1(z̃)dz̃
∫∞
gt

z̃f̃t(z̃)dz̃

)−γ

(C.38)

The gt, defined here as the growth factor of the minimum of support, may not be the growth factor
of production off the BGP. Along the BGP, where f̃t is stationary and gt is constant, this yields
the BGP interest rate

r = gγ

β − 1 (C.39)

C.5 Asymptotic Growth in Equilibrium

Proof of Proposition PT.2.

To show that power laws contradict the condition in Proposition PT.2 that limm→∞
E[z|z>m]

m = 1,
assume that F0(z) is a power law with tail parameter α > 1. Using the normalizations defined

in Section C.2, E[z|z>mt]
mt

=
∫∞
1 z̃mtf0(mtz̃)

1−F0(mt)
dz̃. Simple calculations show that limm→∞

E[z|z>m]
m =

α
α−1 > 1. To show that an initial distribution that is a power law generates an asymptotic BGP in

which the growth rate is a function of the tail parameter α, use equation C.8 to show8

f̃t(z̃) =
mtf0(z̃mt)

1− F0(mt)
(C.42)

∝
mtL(z̃mt)z̃

−α−1m−α
t

L(mt)m
−α
t

(C.43)

∝
L(z̃mt)

L(mt)
z̃−α−1 (C.44)

8Alternatively, define a fat-tailed distribution as: F0(z) such that 1 − F0(z) ∼ x−α, where α > 1 and ∼ denotes
asymptotic equivalence. From equation C.10, asymptotically

F̃t(z̃) =
1− z̃−αm−α − (1−m−α)

1− (1−m−α)
(C.40)

= 1− z̃
−α (C.41)

Thus, F̃t(z̃) is the normalized Pareto distribution as shown in equation C.2,.
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If there is perpetual positive growth, i.e., limt→∞ gt > 1 + ǫ for some ǫ > 0, then by definition
m∞ ≡ limt→∞mt = ∞. Thus, using the definition of slowly varying,

lim
t→∞

f̃t(z̃) ∝ z̃−α−1 (C.45)

Therefore, from the stationarity of equation C.21, in any economy with perpetual growth and a
power law initial distribution, the asymptotic growth factor is the solution to equation A.21.

Conversely, to derive conditions where growth stops, define zmax ≡ max support {F0}. If zmax <
∞, then growth must stop, as eventually limt→∞ gt > 1 + ǫ implies m∞ = ∞, contradicting
mt ≤ zmax for all t, as must be due to the truncation law of motion.

Finally, consider the case where zmax = ∞ and the initial distribution is not a power law. Note
that if there is an equilibrium with no growth at any one point in time, then there is no growth in
the limit. At such a point in time, g = 1, r = 1/β− 1, and Ṽ (z̃) = (1− τ)1+r

r z̃ from equation C.33.
Moreover, since no agents choose to search, from equation C.21,

(1− τ)z̃ + 1
1+rgṼ (z̃/g) ≥ ςz̃ + 1

1+rg
1

1−F̃ (g)

∫ ∞

g
Ṽ (z̃′/g)f̃(z̃′)dz̃′ (C.46)

To determine whether equation C.46 can hold with equality, evaluate this inequality at the indif-
ference point, assumed above to be z̃ = g = 1

1− τ − ς ≥ 1
1+r

(∫ ∞

1
Ṽ (z̃′)f̃(z̃′)dz̃′ − Ṽ (1)

)

(C.47)

From an initial condition, to find bounds on m∞, the minimum of support of the asymptotic
distribution where firms would choose not to upgrade and growth would stop, substitute equations
C.8 and C.33 into C.47 to define

m̄ ≡ inf

{

m |
(
1−τ−ς
1−τ

)(
1
β − 1

)

+ 1 ≥

∫ zmax/m

1
z̃′
mf0(mz̃′)

1− F0(m)
dz̃′

}

(C.48)

From equation C.48, a sufficient condition for the economy to reach an asymptotic maximum size
is if a root m exists to the following equation,

(
1−τ−ς
1−τ

)(
1
β − 1

)

+ 1 =

∫ zmax/m

1
z̃′
mf0(mz̃′)

1− F0(m)
dz̃′ (C.49)

Since the distribution is not a power law, equation C.49 has a root if
(
1−τ−ς
1−τ

)(
1
β − 1

)

+1 > 1.9

Given the assumption in Proposition PT.2, this is true for any 0 < β < 1 and 0 < τ − ς < 1. Thus,
when zmax = ∞ and F0 is such that limm→∞

E[z|z>m]
m = 1, there is a terminal, maximum scale of

the economy.
The bound is on the current state m for the firm decisions rather than on the actual terminal

value of m∞. Due to the discreteness of time, in general m∞ 6= m̄. If m∞ < m̄, then the incentives
for technology adoption were insufficient for a final step towards m̄. It is conceivable that an
equilibrium exists where mT−1 < m̄ with sufficient incentives for adoption that generate growth
factor gT−1 > 1 such that gT−1mT−1 = mT ≥ m̄. However, from T onward no further growth
would occur.

9Note that if F0 were a power law, then limm→∞
E[z|z>m]

m
= α

α−1
> 1, independent of m. Taking the limit of

β → 1 in equation C.49 gives 1 = α
α−1

> 1. This contradiction shows that there always exist parameters such that

power law initial conditions have asymptotic growth.
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Appendix D Unconditional Draws

D.1 The Firm Problem

Having upgrading firms draw from the conditional distribution of producing firms simplifies the
problem and changes the growth rate quantitatively, but does not qualitatively change the growth
mechanism. If upgrading firms received a draw from the unconditional productivity distribution,
the ability to meet low productivity agents would lower the equilibrium growth rate by allowing
congestion effects as firms may take several draws before they successfully upgrade.

In this section, instead of drawing from the distribution Ft(z|z > mt+1), firms draw directly
from the unconditional Ft(z) distribution. In that case, the firm may choose to reject a draw if it
is lower than its current z. The cost or subsidy of search includes foregone production as well as
value proportional to the size of the economy or expected draw. For simplicity, assume that it is
proportional to the search threshold in the economy, mt+1.

10 Modifying equation A.1 gives

Vt(z) = max

{

(1− τ)z + 1
1+rt

Vt+1(z), ςmt+1 +
1

1+rt

∫ ∞

0
Vt+1(max

{
z′, z

}
)dFt(z

′)

}

(D.1)

Assume in equilibrium that mt is increasing (which must be verified). Then firms who search at
time t and draw below the current search threshold will search again next period. The probability
that the firm draws a z′ below the current search threshold is Ft(mt+1). Define the gross value of
search at time t as

Wt ≡
1

1+rt

∫ ∞

0
Vt+1(max

{
z′, z

}
)dFt(z

′) (D.2)

If firms draw below mt+1, they will search next period. Split the integral into the conditional
probability distributions above and below mt+1 and substitute the net value of search to yield

= 1
1+rt

[

(1− Ft(mt+1))

∫ ∞

mt+1

Vt+1(z
′)

ft(z
′)

1− Ft(mt+1)
dz′ + Ft(mt+1)(Wt+1 + ςmt+2)

]

(D.3)

To simplify the problem, define F̂t(z) as the distribution conditional on z > mt.

f̂t(z) ≡
ft(z)

1−Ft(mt)
, min support

{

f̂t

}

= mt (D.4)

F̂t(z) ≡
Ft(z)−Ft(mt)
1−Ft(mt)

(D.5)

Recall that the total number of searchers at time t is St = Ft(mt+1). Define the total number of
searchers who were left behind by obtaining “bad” draws as

S̄t ≡ Ft(mt) (D.6)

Note that conditioning the Ft(z) distribution at or above mt is equal to conditioning the F̂t(z)
distribution at or above mt, as it is simply two successive truncations. Then, equation D.1 simplifies
to

Vt(z) = max
{

(1− τ)z + 1
1+rt

Vt+1(z),

ςmt+1 +
1

1+rt
(1− St)

∫ ∞

mt+1

Vt+1(z
′)

f̂t(z
′)

1− F̂t(mt+1)
dz′ + 1

1+rt
St(Wt+1 + ςmt+2)

}

(D.7)

10An alternative specification is to have the cost/subsidy proportional to the expected draw, conditional on accep-
tance: ςEt [z|z > mt+1]. While a cost proportional to z is possible, it complicates this setup since it requires keeping
track of the equilibrium distribution of failed searchers. Economically, as all firms have the same expected value of
a draw, independent of their z, it makes sense that the cost/subsidy would also be independent of their z beyond
foregone production.
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And the gross value of search is

Wt =
1

1+rt

[

(1− St)

∫ ∞

mt+1

Vt+1(z
′)

f̂t(z
′)

1− F̂t(mt+1)
dz′ + St(Wt+1 + ςmt+2)

]

(D.8)

Using the alternative definition of Wt and cost/subsidy ςmt+1, follow the steps in Section B to find
the value function on a BGP as

Vt(z) = (1− τ)1+r
r

(

1−
(

1
1+r

)ξt(z)
)

z +
(

1
1+r

)ξt(z) (
Wt+ξt(z) + ςmt+ξt(z)+1

)
(D.9)

= (1− τ)1+r
r

(

1−
(

1
1+r

)s)

z +
(

1
1+r

)s
m0g

t+s (W + gς) , z ∈ [m0g
t+s,m0g

t+s+1] (D.10)

D.2 Law of Motion

The mass of searchers at any point in time, St, is now the mass of firms with poor draws in the
past plus the new firms that fall below the threshold.

St = Ft(mt) + (Ft(mt+1)− Ft(mt)) (D.11)

Using the definitions in equation D.5 and D.6

St = S̄t + (1− S̄t)F̂t(mt+1) (D.12)

The law of motion for S̄t includes the total number of searchers who draw below mt+1 such that

S̄t+1 = StFt(mt+1) = S2
t (D.13)

S̄t+1 = [S̄t + (1− S̄t)F̂t(mt+1)]
2 (D.14)

Conditional on drawing above mt+1, the draws are in proportion to the distribution truncated at
mt+1, as in equation PT.3. For this reason, even though the mass of firms below mt+1 is not
invariant, the truncated distribution is independent of the particular mass in St. Hence, the law of
motion for the right tail is similar to that in equation PT.4,

f̂t(z) =
f0(z)

1− F0(mt)
(D.15)

D.3 Normalization

The normalization follows Section C closely, except that the left truncated distribution F̂t(z) is
normalized instead of the unconditional distribution Ft(z) (i.e., F̂t(z) ≡ F̃t(

z
mt

)). From equations
D.12, D.14, C.37, and C.38

St = S̄t + (1− S̄t)F̃t(gt) (D.16)

S̄t+1 = [S̄t + (1− S̄t)F̃t(gt)]
2 (D.17)

Yt = mt(1− St)

∫ ∞

gt

z̃f̃t(z̃)dz̃ (D.18)

1
1+rt

= β

(

gt
1− St+1

1− St

∫∞
gt+1

z̃f̃t+1(z̃)dz̃
∫∞
gt

z̃f̃t(z̃)dz̃

)−γ

(D.19)
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Substituting the normalizations into equation D.7,11

mtṼt(
z
mt

) = max
{

(1− τ)z + 1
1+rt

mt+1Ṽt+1(
z

mt+1
),

ςmt+1 + (1− St)
1

1+rt
1

1−F̃t

(mt+1

mt

)

∫ ∞

mt+1

mt+1Ṽt+1

(
z′

mt+1

)
1
mt

f̃t

(
z′

mt

)

dz′

}

+ St
1

1+rt
mt+1Ṽt+1(1)

(D.20)

Following the same simplifications as in equation C.19,

Ṽt(z̃) = max
{

(1− τ)z̃ + 1
1+rt

gtṼt+1(z̃/gt),

ςgt + (1− St)
1

1+rt
gt

∫ ∞

gt

Ṽt+1(z̃
′/gt)

f̃t(z̃′)

1−F̃t(gt)
dz̃′ + St

1
1+rt

gtṼt+1(1)

}

(D.21)

At the indifference point gt, equate and simplify equation D.21,

1− τ − ς = (1− St(gt))
1

1+rt(gt)

(∫ ∞

gt

Ṽt+1(z̃
′/gt)

f̃t(z̃′)

1−F̃t(gt)
dz̃′ − Ṽt+1(1)

)

(D.22)

where St(gt) and rt(gt) are defined in equations D.16 and D.19. Comparing equation D.22 to C.20
shows the role of the congestion in changing the incentives for search.

D.4 Stationary Equilibrium with Positive Growth

Using equation D.10 to modify equations C.33 and C.34,

Ṽ (z̃) = (1− τ)1+r
r

(

1−
(

1
1+r

)s)

z̃ +
(

1
1+r

)s
gs (W + gς) , z̃ ∈ [gs, gs+1] (D.23)

Ṽ (gs) = (1− τ)1+r
r

(

1−
(

1
1+r

)s)

gs +
(

1
1+r

)s
gs (W + gς) , for s ≥ 0 (D.24)

To solve for the balanced growth path, find an implicit function of g by substituting out W , r, S,
and S̄

At z̃ = g in equation D.23, equate the s = 0 and s = 1 cases using continuity of the value function

W + gς = (1− τ)g + 1
1+rg(W + gς) (D.25)

Solving for W ,

W =
(1− τ − ς(1− g/(1 + r)))g

1− g/(1 + r)
(D.26)

From equation D.19, on a BGP

r = gγ/β − 1 (D.27)

11For the alternative cost,

ςEt [z|z > mt+1] = ς

∫ ∞

mt+1

z
ft(z)

1−Ft(mt+1)
dz

= ς(1− S̄t)

∫

mt+1

zf̂t(z)d = mtς(1− S̄t)

∫ ∞

gt

z̃f̃t(z̃)dz̃

Therefore, on a balanced growth path the costs are a constant proportion of mt, and the cost term in equation D.21
for the Pareto distribution and a BGP is ς(1− S)g−α.
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With the normalized Pareto distribution F̃ (z̃) from equation C.15, equation D.16 and D.17 becomes

S = S̄ − (1− S̄)(1− g−α) (D.28)

S̄ =
[
S̄ + (1− S̄)(1− g−α)

]2
(D.29)

Solving for S̄ and then substituting to solve for S

S̄ = (gα − 1)2 (D.30)

S = gα − 1 (D.31)

To get the final equation in g, insert the normalized Pareto distribution from equation C.15 into
equation D.22, and substitute for Ṽ (1) from D.24

1− τ − ς = (1− S) 1
1+r

(

αgα
∫ ∞

g
Ṽ (z̃′/g)z̃′−1−αdz̃′ −W − gς

)

(D.32)

Use the piecewise linearity of equation D.23 to turn this integral into an infinite sum

∫ ∞

g
Ṽ (z̃′/g)z̃′−1−αdz̃′ =

∞∑

s=1

∫ gs+1

gs

[

(1− τ)1+r
r

(

1−
(

1
1+r

)s)

z̃/g +
(

1
1+r

)s
gs (W + gς)

]

z̃−1−αdz̃

(D.33)

= (1− τ)1+r
r /g

∞∑

s=1

(

1−
(

1
1+r

)s) gs−(s+1)α (gα − g)

α− 1

+ (W + gς)
∞∑

s=1

(
1

1+r

)s
gs

g−α(s+1) (gα − 1)

α
(D.34)

=
g−α (−g(gς +W )(α− 1) + gα(g(gς +W )(α− 1) + (1 + r)α− (1 + r)ατ))

(−g + gα(1 + r)) (α− 1)α
(D.35)

Substituting this integral, S, W , and r into D.32 and simplifying gives an implicit equation for g

1− τ − ς

1− τ
= βgα

(2− gα)( α
α−1 − g)

gα+γ − βg
(D.36)

D.5 Stationary Equilibrium with No Growth

For the distributions, including all with finite support, where limt→∞ gt = 1, follow the steps in
Section C.5 to find the bound m∞ at which growth stops,

m̄ ≡ inf

{

m |
(
1−τ−ς
1−τ

)(
1
β − 1

)

+ 1 ≥

∫ zmax/m

1
z̃′
mf0(mz̃′)

1− F (m)
dz̃′

}

(D.37)

A root may not exist if there is no initial growth at m0. Otherwise, m̄ is a root to the following
equation

(
1−τ−ς
1−τ

)(
1
β − 1

)

+ 1 =

∫ zmax/m̄

1
z̃′
m̄f0(m̄z̃′)

1− F0(m̄)
dz̃′ (D.38)

For non-monotone distributions, it is possible for there to be multiple roots, and m∞ would be the
smallest root.

Appendix E Numerical Algorithm with Unconditional Draws

The following numerically computes a dynamic equilibrium of the economy developed in Section D.
The use of unconditional rather than conditional draws adds numerical stability to the algorithm
when on or very close to the balanced growth path.
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E.1 Setup and Definitions

Setup the following initial and terminal values

• Given an initial condition for f(z):

1. Choose an m0 > 0. This is arbitrarily chosen as long as in equilibrium m1 > m0. If
m1 ≤ m0 after the calculations, then lower m0.

2. Initialize the number left beyond to be S̄0 = F (m0)

3. Get the normalized version of the truncated pdf from equation C.8: f̃(z̃) = m0f(z̃m0)
1−F (m0)

by
equation C.8.

• Choose a large terminal time T .

• If the system is converging towards a balanced growth path, then the asymptotic value func-
tion is ṼT (z̃) from equation D.23. If the system is converging towards g = 1, then the terminal
value will simply be the normalized value of production in perpetuity, ṼT (z̃) = (1− τ)1+r

r z̃.

– The closed-form value function in equation D.23 can be compared against naive value
function iteration of the stationary version of equation D.21. For the fixed point, as the
value function is known to be piecewise linear, cubic-splines and other smooth interpo-
lation methods should not be used. Value function iteration is slow but safe.

– Due to the accumulation of numerical errors from integration, these may be different
at 3-5 significant digits. For larger growth rates, this small difference can compound
geometrically, and change dynamics close to the terminal T . When calculating dynamics
in these cases, it often makes sense to use the solution for ṼT (z̃) from value function
iteration as it is more consistent with the backwards induction used in the rest of the
algorithm.

• Choose a number M of future indifference points for approximating the value function. At
any given t, after M points the value function is assumed to be linear, as shown in equation
B.6.

• Choose an initial guess for the sequence of growth factors ~g ≡ {gt}
T−1+M
t=0 where gt = g∞ for

T ≤ t ≤ T − 1+M . This pads the guess of growth factors with the asymptotic growth factor
to ensure that there are always M future points in the approximation of the value function
(i.e. M + 1 total points with z̃ = 1).

At a particular time, for a particular ~g, use equation C.25 with ~g to calculate the set of points
to use in the approximation of the value function

~mt =

{

1,
0∏

t′=0

gt+t′ ,
1∏

t′=0

gt+t′ , . . . ,
M−1∏

t′=0

gt+t′

}

(E.1)

For example if M = 3, ~m5 = 1, g5, g5g6, g5g6g7.

E.2 Iterative Algorithm

Given a current guess ~g

1. Calculate the sequence of normalized densities f̃t(z̃) for t = 0, . . . , T .

(a) For the baseline model, first calculate the set of (unnormalized) indifference points using
equation C.24.

{mt}
T
t=0 =

{

m0

t−1∏

t′=0

gt′

}T

t=0

(E.2)
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(b) Use equation C.8 to calculate the normalized sequence of distributions,
{

f̃t(z)
}

.12 For

numerical stability in the right tail, it may make sense to use the expression A/B =
elog(A)−log(B)

f̃t(z̃) = exp (log(mt) + log(f(z̃mt))− log(1− F (mt))) (E.3)

F̃t(z̃) = exp (log(F (mtz̃)− F (mt))− log(1− F (mt))) (E.4)

(c) Alternatively, for the particular F0(z), the functions for the truncation at m, f̃m(z̃;m)
and F̃m(z̃;m) could be given directly in accordance with equation C.8 and C.10. This
method should be used if the expression simplifies to remove mt from the denominator.
Otherwise, for many distributions and large m, 1 − F (m) and f(z̃m) can both reach 0
within the computers level of precision, yielding imprecise or 0/0 values for f̃t(z̃) at large
t.

(d) From S̄0, use equations D.17 and D.16 to calculate the mass of searchers and those left
behind,

{
S̄t, St

}
.

2. Calculate the value function backwards for t = T −1, . . . 0 in order to solve for the reservation

productivities, {g′t}. Start with the analytical value ṼT (z̃) and use the calculated
{

f̃t, rt, St

}

.

(a) Calculate the sequence of points to evaluate as ~mt using equation E.1.

(b) Calculate the value function for each value in ~mt using equation D.21.

• This requires numerical integration over the distribution f̃t(z̃) using the previously
calculated Ṽt+1.

13

• Set Ṽt(z̃) as the piecewise linear function between the points ~mt with the calculated
values for use in time t− 1 calculation. The value function should be extrapolated
linearly beyond the M points.

(c) Calculate the indifference point with this value function to find g′t using equation D.22.

• For numerical stability when converging towards the BGP, it is crucial when calcu-
lating the root that St(g) and rt(g) also move to solve the indifference point.

• To implement this, for the given S̄t, find a root to equation D.22 using equations
D.16 and D.19. In the normalized space, this root is the new gt.

• The value function is piecewise linear, so splines and many other approximations
are inappropriate. While the kinks should be at ~mt, for numerical stability in the
backwards induction it is helpful to add a finer grid between points.

3. If {g′t}
T−1+M
t=0 is close in norm to ~g, stop iterating.14

• Otherwise, using the sequence {g′t}
T−1+M
t=0 , update the guess ~g. For example, use a linear

combination of the two for the new ~g′.

12For different models that imply different laws of motion, replace C.8 with the new law of motion, and use {mt}
T

t=0

to sequentially calculate an approximation of
{

f̃t(z)
}

.
13In order to calculate this numerically, a finer grid than ~mt will be required. Since Ṽt+1 is piecewise linear and

kinked, Simpsons rule and similar quadrature approaches are not appropriate unless calculated piecewise between
each interval in ~mt+1. Note limz̃→∞ Ṽ ′

t+1(z̃) = (1 − τ) 1+r
r

and limz̃→∞ f̃t(z̃) = 0. Alternatively, Gauss-Laguerre
quadrature can be used for the infinite right tail integral, or adaptive quadrature routines such as Matlab’s integral

may be used.
14At termination, the f̃T (z̃) should be checked to be close to f̃∞(z̃) as calculated analytically from equation C.12.
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E.3 Baseline Calibration

In the baseline model in Proposition PT.1, the only parameters are α, β, and γ. The cost of search
is in foregone production, so in order to calibrate to a particular growth rate, the length of a time
period must be calibrated to change the search costs. To calibrate to reasonable growth rates, this
may lead to long period lengths, and consequently low β if α is low. In order to establish a yearly
period length, negative values of ς in equation D.1 provide multiples of the time periods for lost
production. With this variation of the model, the calibrated values are:

• γ = 1, β = 0.95: Targets annualized interest rates

• α = 1.5: A compromise between estimates of the far right tail of the firm productivity
distribution, which is often estimated to be low (e.g., 1.1 if ignoring the lower tail) and the
need to fit the Pareto to the whole of the distribution of operating firms

• τ = 0.3: 30% tax rate on earnings

• ς = −12: Note that the mean of the normalized Pareto with α = 1.5 is 3. With yearly time
periods and the additional cost of lost production for the period, it takes approximately 5
years of profits for an average producer to break even when upgrading their technology. See
Perla, Tonetti, and Waugh (2013) for a version of this cost function paid in labor and final
goods at equilibrium prices.

With the above calibration, the asymptotic annualized growth rate is 3.28%.

E.4 Fréchet Example

For a Fréchet initial condition with pdf and cdf

f(z) = e−(
z
s )

−α

αsαz−1−α (E.5)

F (z) = e−(
z
s )

−α

(E.6)

Using equation D.15, the normalized pdf is

f̃t(z̃) =
e−(

m
s
z̃)

−α (
m
s

)−α

1− e−(
m
s )

−α αz̃−α−1 (E.7)

From Section C.5, the economy will converge to the balanced growth path with the shape parameter
α, independent of s. Hence, the analytical ṼT (z̃) is given in equation C.33. Given the calibrations
in Section E.3, with s = 1 and α = 1.5, the growth dynamics for a Fréchet initial condition is given
in Figure 1.

To see the connection between the “thickness” of the distribution and the growth rates, Figure
1 also plots the normalized right tails of the productivity pdfs, f̃t(z̃) for t = 2, 5, 40, and the
asymptotic limit.15 Due to the equivalence of solving a normalized version of the problem from the
normalized distributions, as discussed in Section C, these distributions are sufficient to interpret
the search decision of agents and solve for growth rates of the economy. Note that as t increases,
the normalized distribution becomes thinner with a smaller expectation and more mass closer to
the minimum of support. This decrease in the expected normalized draw creates decreasing growth
rates as the economy converges towards the power law tail. Note that by year 40, the normalized
distribution conditional on production is nearly Pareto.

15This diagram, and a discussion of the economics surrounding it, are also in Figure PT.2. While it is not shown
here, for other parameter choices, f̃t(z̃) could exhibit the increasing left tail of the initial Fréchet distribution for
small t.
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Figure 1: Growth and Normalized Distributions from Fréchet Initial Condition

E.5 Bounded Pareto Example

Since in this model no new technology is ever created through an external R&D process, if the initial
distribution has finite support then eventually growth will stop below the frontier, as discussed in
Section D.5. However, at any point in time a far off frontier has little effect on the decisions of
agents to upgrade their technology. To see this, take the parameters used in Section E.3, but right
truncate the Pareto distribution. To illustrate a far off technology frontier, truncate the distribution
such that max {z̃} = 500, which ends up decreasing production (and hence the expected value of
a draw) by about 4.5% at year 0. Figure 2 shows the results for 100 years of transition dynamics,
and compares to the balanced growth path solution with the a Pareto initial condition with the
same α (denoted gu and Su).

With this, the pdf and cdf with a minimum of support m and maximum of support z̄ are

f(z) =
αmαz−1−α

1−
(
m
z̄

)α (E.8)

F (z) =
1−

(
m
z

)α

1−
(
m
z̄

)α (E.9)

The growth rates start lower than the unbounded case, due almost entirely to the lower expected
value in the distribution rather than the bounded support.16 After about 100 years the growth rate
has decreased by less than 1%, reflecting the approaching boundary. However, with the calibrated
growth rates of 2 − 3%, the technology frontier approaches very slowly and the normalized distri-
bution stays nearly Pareto. Figure 2 shows the productivity distribution after 2 and 400 years.
While the normalized maximum of z̃, as calculated by equation C.1, is 500 at t = 1 and 6.9197 at
t = 400, the probability of a large draw changes less drastically. For example, 1 − F̃2(3) = 0.1924
and 1− F̃400(3) = 0.1455.

16To see why this drop is significant, note that if α = 1.5, the ratio of the expected value of the Pareto distribution
bounded below z̃ = 500 to the unbounded case is .955. When the tail parameter α is higher, this ratio increases
towards unity and the initial growth rates are much closer to the unbounded case. For example, with α = 2.1, the
ratio of expectations for the case bounded below z̃ = 500 is 0.998.
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Figure 2: Growth and Normalized Distributions from Bounded Pareto Initial Condition
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