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Appendix A Robustness

This appendix contains additional robustness results for the neoclassical growth model of

Section 4 in the main text.

A.1 Sparse Grids

In our baseline example, we choose D ≡ {0, . . . 29} and minimize equation (13) to find a kθ(t)

where |θ| ≈ 40, 000. Alternatively, we use a sparser set of grid points and interpolate when t /∈ D.

In particular, consider a grid with more points close to the area with high curvature and fewer

closer to the steady state, DSparse 1 ≡ {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}, and another grid with fewer

points spread evenly over the domain, DSparse 2 ≡ {0, 1, 4, 8, 12, 16, 20, 24, 29}.
Figure A.1 shows the results of these two experiments for an ensemble of 100 initial conditions.

The left panel compares the benchmark solution, k(t), relative to the kθ(t) for DSparse 1 and

DSparse 2. The right panel compares the benchmark c(t) against the corresponding cθ(t). In both

cases, the shaded areas show the 10th and the 90th percentiles.

The distribution of the relative error of kθ(t) is small, even in the extrapolation region. In the

case of cθ(t), the error is so small that the 10th and 90th percentile ranges are not visible. This

experiment establishes that we can achieve very accurate solutions with sparse grids, even though
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Figure A.1: Solutions to equation (13) with DSparse 1 and DSparse 2.

the problem remains overparameterized by around four orders of magnitude. ML algorithms do

not intrinsically require a large amount of data as long as they have a strong inductive bias.

A.2 Solving on a Short Horizon

A challenge in solving for transition dynamics of models with classic algorithms, such as

shooting methods, is the difficulty in choosing the T at which point the solution is close to a

steady state. If T is too small, we move toward the steady state too quickly. If T is too large,

numerical instabilities can accumulate as the solution iterates forward. Choosing the value of T

is an art and requires a good prior on the speed of convergence for a particular model.

To test whether this concern holds with our methods, we solve our model by minimizing

equation (13) with the same H(Θ), but choose D ≡ {0, 1, · · · , 9}. Not only are there few grid

points, but the tN = 9 is far below the point of convergence to the steady state.

Figure A.2 shows the results of this experiment for an ensemble of 100 initial conditions. The

left panel shows the median of the approximate capital paths, denoted by kθ(t) and the benchmark

solution. The right panel shows the median of the approximate consumption paths, denoted by

cθ(t) and the benchmark solution. The shaded areas represent the 10th and 90th percentiles.

The conclusion is that for the short- to medium-run dynamics, the solutions are very accurate,

and the lack of grid points close to the steady state does not feed back to large errors in the short

run (as it would with a shooting method). The extrapolation errors are larger than in the baseline
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Figure A.2: Solutions to equation (13) with D ≡ {0, 1, · · · , 9}.

case, but getting the long run right was not the goal of the exercise. As discussed, extrapolating

and simulating to the steady state is dangerous in general because these solutions are not provably

stable. This experiment suggests that the ML methods relying on the inductive bias are not very

sensitive to choosing data close to the steady state as long as they are not used to extrapolate

too far out of the sample.

A.3 Learning the Scaling Factor

When designing theH(Θ) with a BGP, we added in a learnable rescaling: kθ(t) = exp(ϕt)NN(t, θNN),

where θ ≡ {ϕ, θNN}. Given a D with a large maximum value tN , the min-norm solution for

NN(t; θNN) is achieved by setting ϕ = log(1 + g)—at which point NN(t; θNN) could be non-

explosive. However, if tN is relatively small, then we would not expect the approximation to

exactly choose the ϕ = log(1 + g) case. A smaller ϕ might yield a lower norm NN(t; θNN) for

interpolating a particular D. How well, then, does the algorithm learn g?

Taking the results of Figure 3, which generated solutions using 100 initial conditions, Fig-

ure A.3 plots a histogram of the approximated ϕ and compares them to the true growth rate,

g = 0.02. The results show that the min-norm is biased toward smaller growth rates, as we

might expect. However, the solutions in Figure 3 are still extremely accurate. The variations in

ϕ within Figure A.3 have compensated changes to NN(t; θNN). A very accurate approximation of

the growth rate is not necessary to achieve accurate short- and medium-run dynamics.
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A.4 Learning a Misspecified H(Θ)

In Figure 3, we used economic insights to choose a H(Θ) that included a term for exponential

growth. Is it still helpful to suggest problem structure when designing H(Θ) if the suggestion is

misspecified?
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Figure A.4: Solutions to problem (13) with the misspecified kθ(t) = t ·NN(t; θ)+k0 and g = 0.02.

To analyze this case, we solve a version where the scaling is assumed to be linear rather than

exponential. In particular, kθ(t) = t · NN(t; θ) + k0. The linear scaling allows some degree of
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growth but as tN → ∞, the NN(t; θ) would still need to have an infinite norm in order to capture

the true dynamics of the BGP.

Figure A.4 displays the solutions to problem (13) with this specification for 100 initial condi-

tions. The left panel shows the benchmark and the median of the solution for capital, while the

right panel does the same for consumption. Although the 10th and 90th percentiles are included,

they are so close to each other that they remain indistinguishable even after zooming in.

Compared to the well-specified case of Figure 3, the long-run extrapolation slowly diverges

(and would continue to do so for any finite tN), but this does not cause any issues for the short-

and medium-run dynamics.

A.5 Function Norms and the Transversality Condition

Section 4 characterized the set of functions fulfilling the Euler equation and resource constraints

as (i) kmax(t), cmax(t), with steady states k∗max such that f ′(k∗max) = δ and c∗max = 0; and (ii)

k(t), c(t) with interior steady states k∗ and c∗. The transversality condition (12) eliminated the

first solution to prevent the marginal utility of consumption, u′(c) = c−1, from becoming infinite.

When relying on the inductive bias of the function norms in lieu of the transversality condition,

we must argue that ||kmax||ψ > ||k||ψ for a large class of norms, ψ. To see this, Figure A.5

plots the two solutions to the under-determined system. The blue curves show a set of capital,

consumption, and marginal utility paths, denoted respectively by kmax(t), cmax(t), and u
′ (cmax(t)),

that violate the transversality condition. The black curves show the optimal paths that satisfy

the transversality condition and that eventually converge to k∗, c∗. Focusing on the left panel, we

see that the path of the kmax(t) function has much steeper changes than that of k(t). Therefore,

for a large class of norms and semi-norms, which penalize either the average level or gradients, we

have ∥kmax∥ψ > ∥k∥ψ.
The middle and right panels of Figure A.5 also provide intuition on why these methods can be

fragile to the right formulation. While ∥kmax∥ψ > ∥k∥ψ for a large norm given the big spread

between k∗ and k∗max, this is not the case for c(t). If a norm penalized the gradients (e.g.,∫ T
0
|c′(t)|dt), then the norms of ||cmax||ψ and ||c||ψ would be similar. If the level enters the norm, it

may even bias the solution toward the wrong answer (i.e., where c∗max = 0). The right panel shows

the other extreme, where using the marginal utility makes an even starker difference between

the two solutions. The general advice, true for both the sequential formulation and the state-
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Figure A.5: Comparison between the optimal solution and those violating the transversality
condition.

space version, is that it is best to approximate functions that are most explosive if they violate

transversality. Co-state variables are the best; state variables often work well, but jump variables

are often bounded in a way that makes min-norm solutions harder to disentangle. We see that a

similar issue holds in Appendix B.3 for the recursive formulation.

Appendix B State-Space Formulation

This appendix describes the recursive state-space formulation of the neoclassical growth model,

in contrast to the sequence-space baseline of Section 4. Inductive bias will serve a similar role in

providing a sufficiency condition for transversality, but it will involve norms of the policy functions

rather than the trajectories themselves.

B.1 Model

For the state-space (k, z) ∈ R2
+, equations (10) and (11) become:

u′(c) = u′(c′)β
[
z′1−αf ′(k′) + 1− δ

]
(B.1)

k′ = z1−αf(k) + (1− δ)k − c (B.2)
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where k′, c′, and z′ are the next period capital, consumption, and TFP, respectively, and u(c) =

log c. All model primitives and parameters remain the same as in the baseline. The transversality

condition (12) must hold for all initial conditions in the state-space formulation:

0 = lim
T→∞

βTu′ (cT (k0, z0)) kT+1(k0, z0) for all (k0, z0) ∈ R2
+. (B.3)

In this notation, kT+1(k0, z0) requires iterating the k
′(·, ·) policy and z′ = (1+g)z law of motion

T + 1 times from (k0, z0). Consumption, cT (k0, z0), is found by first iterating to find (kT , zT ) and

then using equation (B.2) to calculate cT = z1−αT f(kT ) + (1− δ)kT − k′(kT , zT ).

Transversality with classic methods. The iteration of the policy k′(·, ·) in equation (B.3)

links stability and transversality. If k′(·, ·) was explosive —e.g., |∇kk
′(k, z)| > 1 for k and z above

some threshold— capital would explode until it asymptotically approached the capital maximizing

the BGP (or k∗max if g = 0) via equation (B.1). This, in turn, would lead to an infinite marginal

utility of consumption in equation (B.3), violating transversality.

In practice, classical methods do not apply the transversality condition as a limit and instead

enforce it indirectly in several ways:

• For sequence-space methods, a steady state is found (perhaps after detrending the BGP),

which is then used as a terminal boundary condition with shooting methods. Those ap-

proaches implicitly use the transversality condition when solving for the correct steady

state.

• Linear rational expectations models and LQ control, such as those in Blanchard and Kahn

(1980) and Klein (2000), select the non-explosive root via spectral methods.

• With global solution methods, such as projection and collocation, the transversality is im-

plicitly fulfilled by restricting the domain for the state space. For example, in the growth

model, we might approximate with Chebyshev polynomials on a compact hypercube on

[kmin, k̄] × [zmin, z̄]. If we chose k̄ < k∗max and kmin < k∗, then policy functions violating

transversality are rejected since they cannot fulfill the Euler equation before hitting corners.

Alternatively, by bounding c ≥ cmin > 0, algorithms implicitly reject functions that fail

transversality by bounding the marginal utility of consumption, u′(c) ≤ u′(cmin) <∞.
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In low dimensions, where we have a strong prior on the relevant regions of the state space,

economists can artfully tinker to ensure that a compact hypercube is placed at the appropriate

location and does not contain the solutions violating transversality. Moreover, by plotting the

dynamics of the model, we can see when simulations diverge (see Fernández-Villaverde et al.,

2016, p.10).1

However, this process is not feasible in high dimensions since we cannot constrain ourselves

to a compact hypercube and may not have a good prior on the location of a steady state. Even

evaluating whether transversality conditions are fulfilled for a given policy is computationally

infeasible since it requires iterating the policy function for all initial conditions.

Notice here the connection to the issue of stability in ML methods. Simple forward itera-

tions can accumulate numerical errors and be numerically unstable when the solution is only

“approximately” stable. This phenomenon appears even in small models.

B.2 Min-Norm Solution

We approximate the capital policy, k′θ(·, ·) ∈ H(Θ), using a highly parameterized neural net-

work. Choose D ⊂ R2
+ with N points and minimize the equivalent of equation (13):

min
θ∈Θ

1

N

∑
(k,z)∈D

[
u′
(
c(k, z; k′θ)

)
u′
(
c(k′θ(k, z), (1 + g)z; k′θ)

) − β
[
(1 + g)zf ′(k′θ(k, z))+ 1− δ

]]2

. (B.4)

Consumption is defined through the feasibility constraint for a given policy for capital k′θ(·, ·):

c
(
k, z; k′θ

)
≡ f(k) + (1− δ)k − k′θ(k, z). (B.5)

Following the interpretation of ERM as a minimum norm solution, we can think of solutions

to equation (B.4) as finding:

min
k′θ∈H(Θ)

||k′θ||ψ (B.6)

s.t.
u′
(
c(k, z; k′θ)

)
u′
(
c(k′θ(k, z), (1 + g)z; k′θ)

) = β
[
(1 + g)zf ′(k′θ(k, z))+ 1− δ

]
, for all (k, z) ∈ D. (B.7)

1This is part of the appeal of perturbative solutions, which are provably stable even in high dimensions (if
properly pruned).
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The norm in problem (B.6) typically depends on gradients due to its bias toward flat solu-

tions. For example, it might have properties similar to those of a Sobolev norm ||k′θ||2W 1,2 ≡∫
||∇k′θ(k, z)||22dF (k, z) for some measure F over the state space, or on a compact subset of the

domain.

To informally argue why this bias would choose the non-explosive solution, consider iterat-

ing the policy function kt+1 = k′θ(kt, zt). A bias toward solutions with smaller gradients with

|∇kk
′
θ(k, z)| < 1 for large k will lead to policies that have smaller changes in capital, kt+1−kt. If a

steady state exists, it will reach the kt ≈ k′θ(kt, zt) fixed point. Iterating forward with the policy,

the bias leads to trajectories that fulfill the transversality condition (B.3). In Appendix B.3. we

demonstrate this by plotting the k′θ(·, ·) for the trajectories that fulfill the Euler equation with

and without transversality.

Results. We solve the minimization problem (B.4) for β = 0.9, α = 0.33, δ = 0.1, g = 0,

z0 = 1, and k0 = 0.4. In our baseline case, D is a uniform grid of 16 points between k1 = 0.8 and

kNk
= 2.5. When g ̸= 0, we can use a grid D ≡ {k1, · · · , kNk

}×{z1, · · · , zNz} of N = Nz×Nk total

points, but the methods could use sampled or simulated points in the state-space. The design

of H(Θ) is a neural network NN(k, z; θ) identical to the sequential version of the model, except

that it takes two inputs (k, z) rather than the univariate t. As before, we solve with the L-BFGS

optimization algorithm, which is fast and requires little tuning.

Figure B.1 shows the median of solutions for capital (top row) and consumption (bottom

row) for an ensemble of 100 initial conditions. The consumption path c̃(t) is calculated with

equation (B.5) given the trajectory of the state space. The benchmark solutions, k(t) and c(t),

are obtained using value function iteration. The left panels show the median of the approximate

capital, k̂(t), and consumption, ĉ(t), paths, along with the benchmark solutions (i.e., k̂(t) and

ĉ(t) are the results of iterating the solution from a particular initial condition). The right panels

show the median of the relative errors for capital, εk(t) ≡ (k̂(t) − k(t))/k(t), and consumption,

εc(t) ≡ (ĉ(t) − c(t))/c(t). The shaded regions show the 10th and 90th percentiles. The gray

region in the top-left panel shows the interpolation region, defined as the convex hull of D. The

dashed parts of the curves show the median of the relative errors in the extrapolation region. The

shaded regions show the 10th and 90th percentiles of the solutions for the 100 random seeds for

optimization of θ.
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Figure B.1: Solutions obtained by solving problem (B.4) for g = 0.

The results show that the inductive bias rules out solutions that violate the transversality

conditions in all cases and achieves a good approximation despite only using 16 data points. Even

when k0 is outside the minimum value of D, the errors are small. An inductive bias leads to good

generalization behavior even outside of the convex hull of Conv(D).

BGP. Since we know that the solution will be homothetic when g = 0.02, we now design H(Θ)

as k′θ(k, z) ≡ z ·NN(k/z, z; θ). We set D as the cartesian product of 16 points in [0.8, 3.5] for capital

with 8 points in [0.8, 1.8]. As before, using a small D highlights the strength of the inductive bias.

This implementation minimizes the problem (B.4) with different H(Θ) and D for 100 seeds on

the initial condition for the optimizer.2

Figure B.2 shows the results for a simulated trajectory from k0 = 0.4 and z0 = 1 and compares

2In the exactly homothetic case, we could further simplify this to a univariate NN(k/z; θ), but we leave in the
z parameter as a check for cases that are almost homothetic and as a further check that the inductive bias avoids
overfitting.
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Figure B.2: Solutions to problem B.4 for g = 0.02.

the dynamics given the benchmark solution. The left panel shows the median of the approximate

capital path, denoted by k̂(t). The right panel shows the median of the approximate consumption

path, denoted by ĉ(t). The shaded regions show the 10th and 90th percentiles.

The results indicate that, even in the case of growing TFP, the solution is very accurate in the

short run, and the differences relative to the benchmark are difficult to see even after zooming in

on the graph. The long-run extrapolation is less accurate than in the benchmark (where we could

manually rescale due to homotheticity). In other words, we can obtain very accurate short- and

medium-run solutions, even though the initial condition for capital lies outside the interpolation

region.

B.3 Failures of Euler Residuals Minimization

Appendix A.5 discussed the importance of choosing the right formulation of the problem to

ensure that the inductive bias toward min-norm solutions would select the solution that fulfills

transversality. This issue is often even more stark in state-space formulations of the problem.

Understanding this phenomenon is especially important before we move toward high-dimensional

problems in macroeconomics, where failures of transversality are less obvious.

We demonstrate this problem by comparing an equivalent formulation of the neoclassical

growth model where we approximate cθ(k, z) to our previous results in Figures B.1 and B.2. The

inductive bias toward min-norm solutions will consistently choose the wrong solution that violates
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transversality.

Let z = 1 and g = 0 for simplicity, approximate cθ(k) ∈ H(Θ) with a neural network, and

implicitly define the investment choice as k′
(
k; cθ

)
≡ f(k) + (1 − δ)k − cθ(k). The equivalent to

the ERM objective function (B.4) becomes:

min
θ∈Θ

1

N

∑
k∈D

[
u′
(
cθ(k)

)
u′
(
cθ
(
k′(k; cθ)

)) − β
[
f ′(k′(k; cθ))+ 1− δ

]]2

︸ ︷︷ ︸
≡εcE(k)

. (B.8)
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Figure B.3: Comparison between approximating the policy function for capital k′(k) vs. the
consumption function c(k) with a deep neural network.

Figure B.3 shows the comparison between approximating the policy function for capital k′θ(·)
vs. approximating the consumption function c(·) with a deep neural network.3 The left panels

3Primitives and parameters are identical to our baseline case. Given the parameters, the steady-state solution
fulfilling transversality is k∗ ≈ 2.0.
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show the results using the baseline k′θ approximation, as in Figure B.1, but plots the Euler error

in the top panel and the policy function k′θ(k) in the bottom panel. The k′(k) in the bottom panel

crosses the 45-degree line around k∗ ≈ 2.0, which is the closed-form steady state. The top right

panel instead plots the square Euler error when approximation the cθ function, while the bottom

right panel plots the implied k′(k; cθ) policy from k′
(
k; cθ

)
≡ f(k) + (1 − δ)k − cθ(k). The solid

curves show the medians, and the shaded regions show the 10th and 90th percentiles over 100

different seeds.

Approximating the consumption functions with a neural network leads to solutions that violate

the transversality condition. Given the cθ approximation, the squared Euler residual error, εcE(k),

is defined in equation (B.8) and when approximating with k′θ, an equivalent definition of εkE(k)

exists from equation (B.4). The Euler errors in both cases are very small and close to numerical

precision, so the optimizer has a solution that interpolates the Euler equation and implicitly fulfills

the resource constraint on D. If anything, the Euler errors are smaller for the cθ approximation.

However, the bottom right panel does not have the k′(k) intersecting the 45-degree line. It has

chosen a cθ such that ∇kk
′(k; cθ) > 1 for all k. This leads to explosive k̃(t) trajectories and fails

the transversality condition in all cases.

The reason why the inductive bias works in the wrong direction in this formulation can be

seen if we return to the middle panel of Figure A.5. The consumption trajectory that violates

transversality converges to 0 and would have a smaller norm for many ψ that penalizes the level of

the function. Even without penalizing the level, the slope of the solution fulfilling transversality

is not systematically smaller in absolute value.

To conclude, low Euler (or value-function) errors are insufficient to ensure that an ML algo-

rithm has successfully solved the problem, and inductive bias with the wrong problem formulation

might systematically choose the policy that violates transversality. The broad advice is to ensure

that the problem is formulated in a way that violations of transversality lead to explosive behavior

(e.g., diverging states or formulating in terms of the marginal utility or co-state variables).
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