
Exploiting Symmetry in

High-Dimensional Dynamic Programming

Mahdi Ebrahimi Kahou1 Jesús Fernández-Villaverde2 Jesse Perla1 Arnav Sood3

October 17, 2022

1University of British Columbia, Vancouver School of Economics

2University of Pennsylvania

3Carnegie Mellon University

Motivation

• Solve heterogenous agent models defined with standard recursive equilibria we know (and love!)

• Many interesting models in macro/IO/trade/etc. have a finite number of agents:

• Many locations (countries, regions, metropolitan areas, industries) and even networks.

• Industry dynamics with many firms and industries.

• Even bread-and-butter heterogeneous agent labor models (e.g., overlapping generations, different types)

• “Continuum” approximations—when feasible—have difficulty with aggregate shocks

• No (non-heuristic) algorithms exist for global heterogeneous agent models with aggregate shocks

• Krusell-Smith solves related but different problem with behavioral approximations.

• “Reinforcement learning” also solves a behavioral variation (e.g., ≈ adaptive expectations)

• We solve exact model with finite # of agents. Will not claim convergence towards continuum.

1

The curse of dimensionality in equilibrium models

• In any models where the distribution impacts decisions (and vice-versa), agents need to keep track

and forecast their own states and the states of everyone else.

• Three components to the curse of dimensionality with many agents (Bellman, 1958, p. IX)

1. The cardinality of the state space is enormous: memory requirements, update of coefficients, ...

2. Even with an approximation, you need to evaluate highly-dimensional conditional expectations over

every idiosyncratic shock: continuation value function, Euler equations, LOMs,...

3. Even with both solved, calculating the ergodic distribution/boundary conditions may still be

cursed—e.g., fixed point solving for ergodic distribution and agent decisions with iterative algorithm

2

There is “no free lunch”, even with deep learning

• Insights from symmetry of problem structure and analogies to “mean-field” limit might help

• Frequently, distributions can be enough to calculate payoffs (e.g., walrasian auctioneers ignore your

name) or “exchangeability” in game theory/IO

• If there are a lot of agents, the maybe forecasting the distribution might become easier?

• Tradeoff: accept higher approximation error for distant regions of statespace

• Dynamics from a (small) finite number of distributional initial conditions. But how given ergodicity/etc.?

• In this paper, we explore these with the classic “investment under uncertainty” model

• We introduce permutation-invariant dynamic programming to formalize symmetry/exchangeability

• Use this theory to guide a deep learning approximation with a simple, non-heuristic algorithm

• See “Spooky Boundaries” paper for when/how these methods can avoid calculating ergodic distributions

3

Background: Deep learning for

functional equations

Equilibrium models as functional equations

Most theoretical models in economics with equilibrium conditions can be written as functional equations:

• Take some function(s) f ∈ F where f : X → Y (e.g. asset price, investment choice, best-response).

• Domain X could be state (e.g. dividends, capital, opponents state) or time if sequential.

• The “model” is ` : F × X → R (e.g., stack Euler and Bellman residuals, equilibrium FOCs).

• Normalize so that a solution is the “zero” of the residuals at each x ∈ X .

Then a solution is an f ∗ ∈ F where `(f ∗, x) = 0 for all x ∈ X . How do we find approximate solution?

4

Interpolation solutions for solving functional equations

Classic approach: use class of functions with finite parameters and interpolate a finite number of points

1. Pick finite set of N points X̂ ⊂ X (e.g., a grid).

2. Choose approximation f̂ (·; θ) ∈ H(Θ) with parameters Θ ⊆ RM (e.g., polynomials, splines).

3. Fit with nonlinear least-squares for a general M R N

min
θ∈Θ

∑
x∈X̂

`(f̂ (·; θ), x)2

• If θ ∈ Θ is such that `(f̂ (·; θ), x) = 0 for all x ∈ X̂ we say it interpolates X̂ .

4. Verify that f̂ (x ; θ) ≈ f ∗(x) for x ∈ X \ X̂ . i.e., has low generalization error

• For M ≥ N we usually interpolate exactly (and hence f̂ (x ; θ) ≈ f ∗(x) for x ∈ X̂).

Deep learning here just enables “pick, choose, fit, hope” with more flexibility using economic insights.

5

“Modern” ML is massively overparameterized

Deep learning here is highly-overparameterized H (i.e. M � N) designed for good generalization:

• Choose H using economic insights (e.g. encode symmetry) given problem structure from ` and F

• Composing H from multiple functions (e.g., “deep”er) tends to generalize better in practice.

• For example, if f : RQ → R could choose f̂ (x ; θ) ≡W2 · σ(W1 · x + b1) + b2:

• σ(·) = max(0, ·) element-wise (i.e. ReLU in CS literature) but many variations.

• W1 ∈ RP×Q , b1 ∈ RP ,W2 ∈ RP , and b2 ∈ R, and θ ∈ Θ ≡ {b1,W1, b2,W2}
• Try adding another “layer”: f̂ (x ; θ) ≡W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3 or more structure.

• Software (e.g., PyTorch) makes it easy to experiment with different H (i.e., neural networks),

manage the θ, calculate ∇θ`(f̂ (·; θ), x) required for optimizers (i.e., auto-differentiation)

6

Deep learning optimizes in a space of functions

• H(Θ) is more general, but the objective hasn’t changed i.e. min
θ∈Θ

∑
x∈X̂ `(f̂ (·; θ), x)2.

• Since M � N, massive multiplicity of θ where f̂ (·; θ) interpolates, and objective value ≈ 0

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
f̂∈H

∑
x∈X̂

`(f̂ , x)2 (1)

Which f̂ ?

7

Deep learning optimization interpolates with an “inductive bias”

• Counterintuitively: for M large enough, optimizers tend to converge towards something unique f̂

in equivalence class from some ‖ · ‖S define on x ∈ X (i.e., not just at interpolated “data”).

• Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm S

min
f̂∈H
||f̂ ||S

s.t. `(f̂ , x) = 0, for x ∈ X̂

• CS literature refers to this as the inductive bias: optimization process biased towards particular f̂

• Intuition is that it may choose the interpolating solutions which are flattest and have smallest derivatives.

• Is ‖f̂ − f ∗‖S small (i.e., does the min-norm solution generalize well)?

• “No free lunch theorem” in optimization/ML. Depends on `,H and X̂ .

In this paper: show how to design H; and implement expectations in ` to solve high-dimensional

equilibria with finite numbers of agents which generalize well on X given x0 8

Application

Our application

A variation of the Lucas and Prescott (1971) model of investment under uncertainty with N firms.

Why?

1. Ljungqvist and Sargent (2018), pp. 226-228, use it to introduce recursive competitive equilibria.

2. Simple model that fits in one slide.

3. Under one parameterization, the model has a known LQ solution, which gives us an exact

benchmark: We can show that our solution will be extremely accurate.

4. By changing one parameter, the model is nonlinear and, yet, our method handles the nonlinear case

as easily as the LQ case and, according to the Euler residuals, with high accuracy.

9

A permutation-invariant economy

• Industry consisting of N > 1 firms, each producing the same good.

• A firm i produces output x with x units of capital.

• Thus, the vector X ≡ [x1, . . . xN]> is the production (or capital) of the whole industry.

• The inverse demand function for the industry is, for some ν ≥ 1 (this is our twist!):

p(X) = 1− 1

N

N∑
i=1

xνi

• The firm does not consider the impact of its individual decisions on p(X).

• Due to adjustment frictions, investing u has a cost γ
2 u

2.

• Law of motion for capital x ′ = (1− δ)x + u + σw + ηω where w ∼ N (0, 1) an i.i.d. idiosyncratic

shock, and ω ∼ N (0, 1) an i.i.d. aggregate shock, common to all firms.

• The firm chooses u to maximize E
[∑∞

t=0 β
t
(
p(X)x − γ

2 u
2
)]

. 10

Recursive problem

The recursive problem of the firm taking the exogenous policy û(·,X) for all other firms as given is:

v(x ,X) = max
u

{
p(X)x − γ

2
u2 + βE [v(x ′,X ′)]

}
s.t. x ′ = (1− δ)x + u + σw + ηω

X ′i = (1− δ)Xi + û(Xi ,X) + σWi + ηω, for i ∈ {1, ...,N}

Take FOCs and equation using standard steps to write equilibrium as the LOM and Euler equation

γu(x ,X) = βE [p(X ′) + γ(1− δ)u(x ′,X ′)]

Goal: Use problem structure to design H class for u(x ,X) approximation

11

A ‘big X , little x ’ dynamic programming problem

Consider:

v(x ,X) = max
u

{
r
(
x , u,X

)
+ βE [v(x ′,X ′)]

}
s.t. x ′ = g(x , u) + σw + ηω

X ′ = G (X) + ΩW + ηω1N

where:

1. x is the individual state of the agent.

2. X is a vector stacking the individual states of all of the N agents in the economy.

3. u is the control.

4. w is random innovation to the individual state, stacked in W ∼ N (0N , IN) and where, w.l.o.g.,

w = W1.

5. ω ∼ N (0, 1) is a random aggregate innovation to all the individual states.

12

Permutation Groups

• A permutation matrix is a square matrix with a single 1 in each row and column and zeros

everywhere else.

• Let SN be the set of all n! permutation matrices of size N × N. For example:

S2 =

{[
1 0

0 1

]
,

[
0 1

1 0

]}

• Multiplying vector v ∈ RN by π ∈ SN reorders elements of v

• (If you know about this): SN is the symmetric group under matrix multiplication.

13

Permutation-invariant dynamic programming

A ‘big X , little x ’ dynamic programming problem is a permutation-invariant dynamic programming

problem if, for all (x ,X) ∈ RN+1 and all permutations π ∈ SN
1. The reward function r is permutation invariant:

r(x , u, πX) = r(x , u,X)

2. The deterministic component of the law of motion for X is permutation equivariant:

G (πX) = πG (X)

3. The covariance matrix of the idiosyncratic shocks satisfies

πΩ = Ωπ

14

Permutation invariance of the optimal solution

Proposition

The optimal solution of a permutation-invariant dynamic programming problem is permutation invariant.

That is, for all π ∈ SN :

u(x , πX) = u(x ,X)

and:

v(x , πX) = v(x ,X)

Can u(x ,X) permutation invariance guide H choice?

15

Curse of dimensionality in this example

Recall there are three separate sources of the “curse” here.

1. Can we approximate u(x ,X) for high dimensional X ∈ RN without massive increases in the X grid?

• Only if u(x ,X) “generalizes” well from limited X̂—otherwise grids on X̂ grow exponentially.

• Remember goal: fitting X̂ always happens with enough points, but with smart H choice and “inductive

bias” might generalize well for small X̂

2. Given intuition that individual Xi have limited affect on u(x ,X), how to calculate E [u(x ′,X ′)]?

• Look at E [u(x ′,X ′) | x ′, ω] to condition on firm’s idiosyncratic state x ′ and aggregate shock ω

• Maybe the dimensionality X ′ ∈ RN is a blessing, not a curse?

3. Can we avoid boundary conditions that require ergodic solutions for X evolution?

• Would focus on limited set of X0 help if we care more about error on X5 than X∞?

• See “Spooky Boundaries” paper

16

Main result I: Representation of permutation-invariant functions

Proposition

(based on Wagstaff et al., 2019) Let f : RN+1 → R be a continuous permutation-invariant function

under SN , i.e., for all (x ,X) ∈ RN+1 and all π ∈ SN :

f (x , πX) = f (x ,X)

Then, there exist a latent dimension L ≤ N and continuous functions ρ : RL+1 → R and φ : R→ RL

such that:

f (x ,X) = ρ

(
x ,

1

N

N∑
i=1

φ(Xi)

)

• This proposition should remind you of Krusell-Smith!

• Key benefit for approximation is the representation (ρ, φ), not dimensionality reduction.

• Fitting a ρ and φ rather than f directly leads to far better generalization on X .

• Faster to fit to X̂ and L� N in practice—but generalization is our goal, not interpolation speed.
17

Main result II: Concentration of measure

Proposition

Concentration of measure when expected gradients are bounded in N Suppose z ∼ N (0N ,Σ), where the

spectral radius of Σ, denoted by ρ(Σ), is independent of N, z1 a draw from z , and f : RN → R is a

function with expected gradient bounded in N. Then:

P
(∣∣f (z1)− E [f (z)]

∣∣ ≥ ε) ≤ ρ(Σ)C

ε2

1

N

• As Ledoux (2001) puts it: “A random variable that depends in a Lipschitz way on many independent

variables (but not too much on any of them) is essentially constant.”

• With concentration of measure, dimensionality is not a curse; it is a blessing!

Concretely, for our problem can calculate E [u(x ′,X ′) | w , ω] with a single draw of idiosyncratic shocks W

18

Solving the Model

Our deep learning architectures

• We will specify several deep learning architectures H(θ):

1. φ is approximated as a function of a finite set of moments à la Krusell-Smith but in a fully nonlinear way

as in Fernández-Villaverde et al. (2019). We use 1 and 4 moments.

2. φ is approximated by a flexible ReLU network with two layers in φ and 128 coefficients).

• The baseline φ(Identity), φ(Moments), and φ(ReLU) have 49.4K, 49.8K, and 66.8K coefficients

respectively regardless of N.

• In all cases, ρ is a highly parameterized neural network with four layers.

• A surprising benefit of a high-dimensional approximation is the “double-descent” phenomenon in

machine learning (see Belkin et al., 2019, and Advani et al., 2020): more coefficients makes it easier

to find minimum-norm solutions.

• All the code in PyTorch but very easy to implement in any ML framework.

19

Solution method follows “interpolation” methods

1. Pick: X̂ as simulated trajectories from X0. Only need dozens/hundreds of points X̂ regardless of N

2. Choose: implement the H with u with ρ and φ as discussed

3. Fit: residual ε(X ; u) ≡ γu(X)− βE [P(X ′) + γ(1− δ)u(X ′)] using LOM for X ′

min
û∈H

∑
X∈X̂

ε(X ; û)2

• But don’t forget the better mental model is that this finds a particular interpolating solution

min
û∈H
||û||S

s.t. ε(X ; û) = 0, for X ∈ X̂

4. Verify: Norm S unknown, but check ε(X ; û) sample/simulate by drawing X ∈ X \ X̂ from X0

Study two cases: linear (ν = 1) and nonlinear (ν > 1) demand functions
20

Case 1: Linear to verify algorithms and methods

• With ν = 1, we have a linear demand function: p(X) = 1− 1
N

∑N
i=1 xi .

• It generates an LQ dynamic programming problem (only the mean of xi matters!).

• We can find the exact u(x ,X) using the linear regulator solution.

• The LQ solution gives us a benchmark against which we can compare our deep learning solution.

• The neural network “learns” very quickly that the solution is u(x ,X) = H0 + 1
NH1

∑N
i=1 xi and finds

a high-dimensional approximation which matches that for the training grid.

• We also compute a modified linear regulator solution with one Monte Carlo draw instead of setting

the individual shocks to zero: illustrates how concentration of measure works.

• Bonus point: we show how to implement this modified linear regulator solution. Useful for

non-Gaussian LQ problems where certainty equivalence does not hold.

21

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(Moments)

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(Identity)

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(ReLU)

4

6

×10−7

Figure 1: The Euler residuals for ν = 1 and N = 128 for φ(Identity), φ(Moments), and φ(ReLU). The dark blue

curve shows the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict

the 2.5th and 97.5th percentiles.

22

0 10 20 30 40 50 60
Time(t)

0.0250

0.0275

0.0300

0.0325

u(Xt) with φ(Identity), φ(Moments) and φ(ReLU) : Equilibrium Path

u(Xt), LQ

u(Xt), φ(Identity)

u(Xt), φ(Moments)

u(Xt), φ(ReLU)

54 55 56

0.0340

0.0341

Figure 2: Comparison between baseline approximate solutions and the LQ-regulator solution for the case with

ν = 1 and N = 128.
23

100 101 102 103 104 105

N

80

90

100

Computation time(seconds)

100 101 102 103 104 105

N

2

3

4

5

×10−7 Mean Test Loss(ε)

Figure 3: Performance of the φ(ReLU) for different N (median value of 21 trials).

24

Case 2: Nonlinear case with no “closed-form” solution

• With ν > 1, we have a nonlinear demand function: p(X) = 1− 1
N

∑N
i=1 x

ν
i .

• Notice how, now, the whole distribution of of xi matters!

• But we can still find the solution to this nonlinear case using exactly the same functional

approximation and algorithm as before.

• We do not need change anything in the code except the value of ν.

• Since the LQ solution no longer holds, we do not have an exact solution to use as a benchmark, but

can check residuals.

• Same model and method. Computation time by N nearly the same to linear case

25

0 25 50
Time(t)

10−10

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(Moments)

0 25 50
Time(t)

10−10

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(ReLU)

0.75

1.00

1.25

1.50

×10−6

Figure 4: The Euler residuals for ν = 1.5 and N = 128 for φ(Moments) and φ(ReLU). The dark blue curve shows

the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict the 2.5th and

97.5th percentiles.
26

0 10 20 30 40 50 60
Time(t)

0.025

0.030

0.035

u(Xt) with φ(ReLU): Equilibrium Path

ν = 1.0

ν = 1.05

ν = 1.1

ν = 1.5

Figure 5: The optimal policy u along the equilibrium paths for ν = [1.0, 1.05, 1.1, 1.5] and N = 128. Each path

shows the optimal policy for a single trajectory.
27

Generalizability and

Approximation Error

Representation with linear prices

Recall the representation,

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

φ(Xi)

)

Can show that the following exact solution holds with our representation

• φ(Xn) = Xn identity, and L = 1

• ρ(x , y) = θ1 + θ2y

• Doesn’t matter how to generate X since only need 2 points

They may let you reflect on symmetry and summary statistics but no surprises so far. But. . .

28

Extreme example of generalizability of neural networks

• Forgot we know any closed form, and see if overfitting hurts us.

• Fit three data points in R512

• Flexible functional form with 17.7 K parameters

• Now, evaluate for a whole bunch of reasonable trajectories from the initial condition and check the

policy error

• 5× 10−5 MSE of euler, approximately 0.06% relative error of u(X)

The deep-learning generalization theory to explain this is emerging.

29

The cure to overfitting is to add more parameters

Belkin et al., 2019—traditional statistics/bias-variance tradeoff stop around the interpolation threshold
30

Concentration of measure is the bless of dimensionality

E [P(X ′) + γu(X ′) | ω] ≈ P(X̂ ′) + γu(X̂ ′), for draw of X̂ ′ |ω

• Conditional expectation becomes constant as N gets large!

• Can calculate the expectation with a single Monte-carlo draw
• Draw X̂ ′ conditioned on ω since u,P depend “a lot” on it

• Check P(X) doesn’t depend too much on any Xi ∈ X

• e.g. is expected gradient bounded in N

• u(·) properties can follow from P(·)
• Back to “continuum trick”

• It worked because the P(·) and u(·) don’t depend on any one agent outside of x (i.e. not sensitive to

measure zero changes)

• Very robust result, especially easy to fulfill with symmetric functions
31

Analytic euler error due to the concentration of measure

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of ε(X; u)

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of u(X ′) Errors

Euler Error with with one draw X̂ using LOM. Recall ε ≡ −γu(X) + βP(X̂ ′) + γ(1− δ)u(X̂ ′)

32

Conclusions

Extensions

1. Decreasing returns to scale: the policy becomes a function of x .

2. Multiple productivity types.

3. Complex idiosyncratic states.

4. Global solutions with transitions and aggregate shocks.

5. Many different network architectures.

33

Summarizing our contribution

• Primary goal: new tools to solve (previously) intractable models (e.g. finite # of agents)

• Method for solving high-dimensional dynamic programming problems and competitive equilibria

• Dynamic models with heterogeneity & idiosyncratic/aggregate shocks

• Global and with transitions, and yet no need for backwards induction or even a calculations of a

steady-state

• Dimensionality is a bless; only a curse in low to medium dimensions

• Using deep learning for function approximation with a huge # of parameters (� grid points)

• Standard recursive economics. No agent-based modeling. No reinforcement learning

• Reevaluate Krusell-Smith and how far it can be pushed with symmetry+deep learning

• Some teasers from the implementation

• 10000+ dimensional state-spaces are not a problem

• 10000+ dimensional expectations with one Monte-carlo draw

• Fit linear case with 17.7 K parameters fit with only 3 data points!

34

Appendix

Table 1: Performance of Different Networks in Solving the Linear Model

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

Policy Error
(|u − uref|)

Policy Error(
|u−uref|

uref

)
group description

φ(Identity)
Baseline 42 49.4 4.1e-06 3.3e-07 3.3e-07 2.9e-05 0.10%

Thin (64 nodes) 33 12.4 3.7e-06 2.7e-07 2.7e-07 3.4e-05 0.10%

φ(Moments)

Baseline 55 49.8 1.4e-06 7.6e-07 7.6e-07 2.8e-05 0.09%

Moments (1,2) 211 49.5 2.4e-06 1.1e-06 2.3e-06 4.4e-05 0.14%

Very Shallow(1 layer) 241 0.6 1.1e-05 8.4e-06 7.9e-06 1.1e-02 34.00%

Thin (64 nodes) 82 12.6 1.6e-06 9.1e-07 9.2e-07 3.8e-05 0.12%

φ(ReLU)

Baseline 107 66.8 3.7e-06 3.3e-07 3.3e-07 2.7e-05 0.09%

L = 2 86 66.3 1.3e-05 2.1e-07 2.2e-07 2.6e-05 0.08%

L = 16 91 69.9 5.5e-06 1.5e-07 1.5e-07 2.1e-05 0.07%

Shallow(φ : 1 layer, ρ : 2 layers) 79 17.7 2.0e-06 5.5e-07 5.5e-07 3.2e-05 0.11%

Deep(φ : 4 layers, ρ : 8 layers) 242 165.1 2.1e-03 2.2e-03 2.1e-03 2.7e-03 8.50%

Thin(φ, ρ : 64 nodes) 87 17.0 1.1e-05 4.5e-07 4.5e-07 3.0e-05 0.10%

35

Table 2: Nonlinear Model Performance

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

group description

φ(Moments)

Baseline 26 49.8 6.0e-06 5.0e-06 3.8e-06

Moments (1) 24 49.4 2.7e-05 6.5e-06 3.4e-06

Moments (1,2) 27 49.5 8.0e-06 5.1e-06 3.6e-06

Very Shallow (1 layer) 252 0.6 8.3e-06 1.4e+00 5.0e-06

Shallow (2 layers) 35 17.0 5.8e-06 1.2e+00 4.4e-06

Thin (32 nodes) 66 3.2 1.1e-05 9.7e-06 4.4e-06

φ(ReLU)

Baseline 60 67.1 1.4e-05 4.7e-06 3.3e-06

L = 1 109 66.3 9.4e-06 1.3e-05 4.5e-06

L = 2 73 66.6 1.0e-05 3.3e-06 2.3e-06

L = 8 73 68.1 1.1e-05 4.9e-06 2.0e-06

L = 16 72 70.2 1.5e-05 5.4e-06 1.7e-06

Very Shallow(φ, ρ : 1 layer) 136 1.4 8.9e-06 4.8e+06 4.9e-06

Shallow(φ, ρ : 2 layers) 47 34.3 1.0e-05 9.2e-06 2.8e-06

Thin(φ, ρ : 32 nodes) 52 4.5 1.3e-05 6.0e-06 2.7e-06

36

Comparing Performance: More Different Network Designs (Linear)

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

Policy Error
(|u − uref|)

Policy Error(
|u−uref|

uref

)
group description

φ(Identity)

Baseline 42 49.4 4.1e-06 3.3e-07 3.3e-07 2.9e-05 0.10%

Thin (64 nodes) 33 12.4 3.7e-06 2.7e-07 2.7e-07 3.4e-05 0.10%

Shallow (2 layers) 159 16.6 3.7e-06 7.8e-07 7.6e-07 9.4e-03 33.53%

φ(Moments)

Baseline 55 49.8 1.4e-06 7.6e-07 7.6e-07 2.8e-05 0.09%

Moments (1,2) 211 49.5 2.4e-06 1.1e-06 2.3e-06 4.4e-05 0.14%

Very Shallow(1 layer) 241 0.6 1.1e-05 8.4e-06 7.9e-06 1.1e-02 34.00%

Shallow (2 layers) 137 17.0 1.6e-06 9.9e-07 9.5e-07 1.8e-02 59.41%

Deep(8 layers) 241 115.3 2.8e-06 1.2e-06 1.0e-06 5.2e-05 0.16%

Thin (64 nodes) 82 12.6 1.6e-06 9.1e-07 9.2e-07 3.8e-05 0.12%

Wide (256 nodes) 61 197.9 1.8e-06 8.7e-07 8.0e-07 4.3e-05 0.13%

φ(ReLU)

Baseline 107 66.8 3.7e-06 3.3e-07 3.3e-07 2.7e-05 0.09%

L = 1 88 66.0 1.8e-05 2.3e-07 2.4e-07 2.8e-05 0.10%

L = 2 86 66.3 1.3e-05 2.1e-07 2.2e-07 2.6e-05 0.08%

L = 8 70 67.8 3.0e-05 5.9e-07 5.9e-07 3.3e-05 0.11%

L = 16 91 69.9 5.5e-06 1.5e-07 1.5e-07 2.1e-05 0.07%

Shallow(φ : 1 layer, ρ : 2 layers) 79 17.7 2.0e-06 5.5e-07 5.5e-07 3.2e-05 0.11%

Shallow(φ : 1 layer) 58 50.4 8.7e-06 1.5e-07 1.5e-07 2.5e-05 0.08%

Shallow(ρ : 2 layers) 89 34.0 3.1e-06 4.2e-07 4.2e-07 2.7e-05 0.09%

Deep(φ : 4 layers, ρ : 8 layers) 242 165.1 2.1e-03 2.2e-03 2.1e-03 2.7e-03 8.50%

Very Thin(φ, ρ : 16 nodes) 45 1.2 1.2e-05 4.9e-07 4.9e-07 3.2e-05 0.10%

Thin(φ, ρ : 64 nodes) 87 17.0 1.1e-05 4.5e-07 4.5e-07 3.0e-05 0.10%

Wide(φ, ρ : 256 nodes) 115 264.7 5.4e-06 4.0e-07 4.0e-07 4.1e-05 0.13%

• φ(ReLU) baseline info:

• φ(Moments) baseline info:

37

Comparing Performance: Different Networks Designs (nonlinear)

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

group description

φ(Moments)

Baseline 26 49.8 6.0e-06 5.0e-06 3.8e-06

Moments (1) 24 49.4 2.7e-05 6.5e-06 3.4e-06

Moments (1,2) 27 49.5 8.0e-06 5.1e-06 3.6e-06

Very Shallow (1 layer) 252 0.6 8.3e-06 1.4e+00 5.0e-06

Shallow (2 layers) 35 17.0 5.8e-06 1.2e+00 4.4e-06

Thin (32 nodes) 66 3.2 1.1e-05 9.7e-06 4.4e-06

φ(ReLU)

Baseline 60 67.1 1.4e-05 4.7e-06 3.3e-06

L = 1 109 66.3 9.4e-06 1.3e-05 4.5e-06

L = 2 73 66.6 1.0e-05 3.3e-06 2.3e-06

L = 8 73 68.1 1.1e-05 4.9e-06 2.0e-06

L = 16 72 70.2 1.5e-05 5.4e-06 1.7e-06

Very Shallow(φ, ρ : 1 layer) 136 1.4 8.9e-06 4.8e+06 4.9e-06

Shallow(φ, ρ : 2 layers) 47 34.3 1.0e-05 9.2e-06 2.8e-06

Thin(φ, ρ : 32 nodes) 52 4.5 1.3e-05 6.0e-06 2.7e-06

• φ(ReLU) info:

• φ(Moments) info:

38

	Background: Deep learning for functional equations
	Application
	Solving the Model
	Generalizability and Approximation Error
	Conclusions
	Appendix

