Exploiting Symmetry in High-Dimensional Dynamic Programming

Mahdi Ebrahimi Kahou¹ Jesús Fernández-Villaverde² Jesse Perla¹ Arnav Sood³ October 17, 2022

¹University of British Columbia, Vancouver School of Economics

²University of Pennsylvania

³Carnegie Mellon University

Motivation

- Solve heterogenous agent models defined with standard recursive equilibria we know (and love!)
- Many interesting models in macro/IO/trade/etc. have a finite number of agents:
 - Many locations (countries, regions, metropolitan areas, industries) and even networks.
 - Industry dynamics with many firms and industries.
 - Even bread-and-butter heterogeneous agent labor models (e.g., overlapping generations, different types)
- "Continuum" approximations-when feasible-have difficulty with aggregate shocks
- No (non-heuristic) algorithms exist for global heterogeneous agent models with aggregate shocks
 - Krusell-Smith solves related but different problem with behavioral approximations.
 - "Reinforcement learning" also solves a behavioral variation (e.g., \approx adaptive expectations)
 - We solve exact model with finite # of agents. Will not claim convergence towards continuum.

- In any models where the distribution impacts decisions (and vice-versa), agents need to keep track and forecast their own states and the states of everyone else.
- Three components to the curse of dimensionality with many agents (Bellman, 1958, p. IX)
 - 1. The cardinality of the state space is enormous: memory requirements, update of coefficients, ...
 - 2. Even with an approximation, you need to evaluate highly-dimensional conditional expectations over every idiosyncratic shock: continuation value function, Euler equations, LOMs,...
 - 3. Even with both solved, calculating the ergodic distribution/boundary conditions may still be cursed—e.g., fixed point solving for ergodic distribution and agent decisions with iterative algorithm

There is "no free lunch", even with deep learning

- Insights from symmetry of problem structure and analogies to "mean-field" limit might help
 - Frequently, distributions can be enough to calculate payoffs (e.g., walrasian auctioneers ignore your name) or "exchangeability" in game theory/IO
 - If there are a lot of agents, the maybe forecasting the distribution might become easier?
- Tradeoff: accept higher approximation error for distant regions of statespace
 - Dynamics from a (small) finite number of distributional initial conditions. But how given ergodicity/etc.?
- In this paper, we explore these with the classic "investment under uncertainty" model
 - We introduce permutation-invariant dynamic programming to formalize symmetry/exchangeability
 - Use this theory to guide a deep learning approximation with a simple, non-heuristic algorithm
 - See "Spooky Boundaries" paper for when/how these methods can avoid calculating ergodic distributions

Background: Deep learning for functional equations

Most theoretical models in economics with equilibrium conditions can be written as functional equations:

- Take some function(s) $f \in \mathcal{F}$ where $f : \mathcal{X} \to \mathcal{Y}$ (e.g. asset price, investment choice, best-response).
- Domain \mathcal{X} could be state (e.g. dividends, capital, opponents state) or time if sequential.
- The "model" is $\ell : \mathcal{F} \times \mathcal{X} \to \mathcal{R}$ (e.g., stack Euler and Bellman residuals, equilibrium FOCs).
- Normalize so that a solution is the "zero" of the residuals at each $x \in \mathcal{X}$.

Then a solution is an $f^* \in \mathcal{F}$ where $\ell(f^*, x) = 0$ for all $x \in \mathcal{X}$. How do we find approximate solution?

Interpolation solutions for solving functional equations

Classic approach: use class of functions with finite parameters and interpolate a finite number of points

- 1. **Pick** finite set of **N** points $\hat{\mathcal{X}} \subset \mathcal{X}$ (e.g., a grid).
- 2. Choose approximation $\hat{f}(\cdot; \theta) \in \mathcal{H}(\Theta)$ with parameters $\Theta \subseteq \mathbb{R}^{M}$ (e.g., polynomials, splines).

3. Fit with nonlinear least-squares for a general $M \ge N$

$$\min_{\theta \in \Theta} \sum_{x \in \hat{\mathcal{X}}} \ell(\hat{f}(\cdot; \theta), x)^2$$

• If $\theta \in \Theta$ is such that $\ell(\hat{f}(\cdot; \theta), x) = 0$ for all $x \in \hat{\mathcal{X}}$ we say it interpolates $\hat{\mathcal{X}}$.

4. Verify that $\hat{f}(x; \theta) \approx f^*(x)$ for $x \in \mathcal{X} \setminus \hat{\mathcal{X}}$. i.e., has low generalization error

• For $M \ge N$ we usually interpolate exactly (and hence $\hat{f}(x; \theta) \approx f^*(x)$ for $x \in \hat{\mathcal{X}}$).

Deep learning here just enables "pick, choose, fit, hope" with more flexibility using economic insights.

Deep learning here is highly-overparameterized \mathcal{H} (i.e. $M \gg N$) designed for good generalization:

- Choose ${\cal H}$ using economic insights (e.g. encode symmetry) given problem structure from ℓ and ${\cal F}$
- Composing $\mathcal H$ from multiple functions (e.g., "deep" er) tends to generalize better in practice.
- For example, if $f : \mathbb{R}^Q \to \mathbb{R}$ could choose $\hat{f}(x; \theta) \equiv W_2 \cdot \sigma(W_1 \cdot x + b_1) + b_2$:
 - $\sigma(\cdot) = max(0, \cdot)$ element-wise (i.e. ReLU in CS literature) but many variations.
 - $W_1 \in \mathbb{R}^{P \times Q}, b_1 \in \mathbb{R}^P, W_2 \in \mathbb{R}^P$, and $b_2 \in \mathbb{R}$, and $\theta \in \Theta \equiv \{b_1, W_1, b_2, W_2\}$
 - Try adding another "layer": $\hat{f}(x; \theta) \equiv W_3 \cdot \sigma(W_2 \cdot \sigma(W_1 \cdot x + b_1) + b_2) + b_3$ or more structure.
- Software (e.g., PyTorch) makes it easy to experiment with different *H* (i.e., neural networks), manage the θ, calculate ∇_θℓ(f̂(·; θ), x) required for optimizers (i.e., auto-differentiation)

Deep learning optimizes in a space of functions

- $\mathcal{H}(\Theta)$ is more general, but the objective hasn't changed i.e. $\min_{\theta \in \Theta} \sum_{x \in \hat{\mathcal{X}}} \ell(\hat{f}(\cdot; \theta), x)^2$.
- Since $M \gg N$, massive multiplicity of θ where $\hat{f}(\cdot; \theta)$ interpolates, and objective value ≈ 0
- Since individual heta are irrelevant it is helpful to think of optimization directly within $\mathcal H$

$$\min_{\hat{f}\in\mathcal{H}}\sum_{x\in\hat{\mathcal{X}}}\ell(\hat{f},x)^2$$

Deep learning optimization interpolates with an "inductive bias"

- Counterintuitively: for *M* large enough, optimizers tend to converge towards something unique *f* in equivalence class from some || · ||_s define on x ∈ X (i.e., not just at interpolated "data").
- Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm S

$$egin{array}{l} \min_{\hat{f}\in\mathcal{H}} ||\hat{f}||_{\mathcal{S}} \ {
m s.t.} \ \ell(\hat{f},x) = 0, \quad ext{ for } x\in\hat{\mathcal{X}} \end{array}$$

- CS literature refers to this as the inductive bias: optimization process biased towards particular \hat{f}
- Intuition is that it may choose the interpolating solutions which are flattest and have smallest derivatives.
- Is $\|\hat{f} f^*\|_S$ small (i.e., does the min-norm solution generalize well)?
 - "No free lunch theorem" in optimization/ML. Depends on ℓ, \mathcal{H} and $\hat{\mathcal{X}}$.

In this paper: show how to design \mathcal{H} ; and implement expectations in ℓ to solve high-dimensional equilibria with finite numbers of agents which generalize well on \mathcal{X} given x_0

Application

A variation of the Lucas and Prescott (1971) model of investment under uncertainty with N firms. Why?

- 1. Ljungqvist and Sargent (2018), pp. 226-228, use it to introduce recursive competitive equilibria.
- 2. Simple model that fits in one slide.
- 3. Under one parameterization, the model has a known LQ solution, which gives us an exact benchmark: We can show that our solution will be extremely accurate.
- 4. By changing one parameter, the model is nonlinear and, yet, our method handles the nonlinear case as easily as the LQ case and, according to the Euler residuals, with high accuracy.

A permutation-invariant economy

- Industry consisting of N > 1 firms, each producing the same good.
- A firm *i* produces output *x* with *x* units of capital.
- Thus, the vector $X \equiv [x_1, \dots, x_N]^{\top}$ is the production (or capital) of the whole industry.
- The inverse demand function for the industry is, for some $\nu \geq 1$ (this is our twist!):

$$p(X) = 1 - rac{1}{N}\sum_{i=1}^N x_i^
u$$

- The firm does not consider the impact of its individual decisions on p(X).
- Due to adjustment frictions, investing u has a cost $\frac{\gamma}{2}u^2$.
- Law of motion for capital x' = (1 − δ)x + u + σw + ηω where w ~ N(0, 1) an i.i.d. idiosyncratic shock, and ω ~ N(0, 1) an i.i.d. aggregate shock, common to all firms.
- The firm chooses u to maximize $\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \left(p(X)x \frac{\gamma}{2}u^2\right)\right]$.

Recursive problem

The recursive problem of the firm taking the exogenous policy $\hat{u}(\cdot, X)$ for all other firms as given is:

$$\begin{aligned} v(x,X) &= \max_{u} \left\{ p(X)x - \frac{\gamma}{2}u^2 + \beta \mathbb{E}\left[v(x',X')\right] \right\} \\ \text{s.t. } x' &= (1-\delta)x + u + \sigma w + \eta \omega \\ X'_i &= (1-\delta)X_i + \hat{u}(X_i,X) + \sigma W_i + \eta \omega, \quad \text{for } i \in \{1,...,N\} \end{aligned}$$

Take FOCs and equation using standard steps to write equilibrium as the LOM and Euler equation

$$\gamma u(x,X) = \beta \mathbb{E} \left[p(X') + \gamma (1-\delta) u(x',X') \right]$$

Goal: Use problem structure to design \mathcal{H} class for u(x, X) approximation

A 'big X, little x' dynamic programming problem

Consider:

$$v(x,X) = \max_{u} \left\{ r(x,u,X) + \beta \mathbb{E} \left[v(x',X') \right] \right\}$$

s.t. $x' = g(x,u) + \sigma w + \eta \omega$
 $X' = G(X) + \Omega W + \eta \omega \mathbf{1}_N$

where:

- 1. x is the individual state of the agent.
- 2. X is a vector stacking the individual states of all of the N agents in the economy.
- 3. *u* is the control.
- 4. *w* is random innovation to the individual state, stacked in $W \sim \mathcal{N}(\mathbf{0}_N, \mathbf{I}_N)$ and where, w.l.o.g., $w = W_1$.
- 5. $\omega \sim \mathcal{N}(0,1)$ is a random aggregate innovation to all the individual states.

- A permutation matrix is a square matrix with a single 1 in each row and column and zeros everywhere else.
- Let S_N be the set of all n! permutation matrices of size $N \times N$. For example:

$$S_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
ight\}$$

- Multiplying vector $v \in \mathbb{R}^N$ by $\pi \in S_N$ reorders elements of v
- (If you know about this): S_N is the symmetric group under matrix multiplication.

Permutation-invariant dynamic programming

A 'big X, little x' dynamic programming problem is a **permutation-invariant dynamic programming problem** if, for all $(x, X) \in \mathbb{R}^{N+1}$ and all permutations $\pi \in S_N$

1. The reward function *r* is **permutation invariant**:

$$r(x, u, \pi X) = r(x, u, X)$$

2. The deterministic component of the law of motion for X is **permutation equivariant**:

 $G(\pi X) = \pi G(X)$

3. The covariance matrix of the idiosyncratic shocks satisfies

 $\pi\Omega=\Omega\pi$

Proposition

The optimal solution of a permutation-invariant dynamic programming problem is permutation invariant. That is, for all $\pi \in S_N$:

 $u(x,\pi X)=u(x,X)$

and:

 $v(x,\pi X)=v(x,X)$

Can u(x, X) permutation invariance guide \mathcal{H} choice?

Recall there are three separate sources of the "curse" here.

- 1. Can we approximate u(x, X) for high dimensional $X \in \mathbb{R}^N$ without massive increases in the \mathcal{X} grid?
 - Only if u(x, X) "generalizes" well from limited $\hat{\mathcal{X}}$ —otherwise grids on $\hat{\mathcal{X}}$ grow exponentially.
 - Remember goal: fitting $\hat{\mathcal{X}}$ always happens with enough points, but with smart \mathcal{H} choice and "inductive bias" might generalize well for small $\hat{\mathcal{X}}$
- 2. Given intuition that individual X_i have limited affect on u(x, X), how to calculate $\mathbb{E}[u(x', X')]$?
 - Look at $\mathbb{E}[u(x', X') \mid x', \omega]$ to condition on firm's idiosyncratic state x' and aggregate shock ω
 - Maybe the dimensionality $X' \in \mathbb{R}^N$ is a blessing, not a curse?
- 3. Can we avoid boundary conditions that require ergodic solutions for X evolution?
 - Would focus on limited set of X_0 help if we care more about error on X_5 than X_∞ ?
 - See "Spooky Boundaries" paper

Main result I: Representation of permutation-invariant functions

Proposition

(based on Wagstaff et al., 2019) Let $f : \mathbb{R}^{N+1} \to \mathbb{R}$ be a continuous permutation-invariant function under S_N , i.e., for all $(x, X) \in \mathbb{R}^{N+1}$ and all $\pi \in S_N$:

 $f(x,\pi X)=f(x,X)$

Then, there exist a latent dimension $L \leq N$ and continuous functions $\rho : \mathbb{R}^{L+1} \to \mathbb{R}$ and $\phi : \mathbb{R} \to \mathbb{R}^{L}$ such that:

$$f(x, X) =
ho\left(x, \frac{1}{N}\sum_{i=1}^{N}\phi(X_i)
ight)$$

- This proposition should remind you of Krusell-Smith!
- Key benefit for approximation is the representation (ρ, ϕ) , not dimensionality reduction.
- Fitting a ρ and ϕ rather than f directly leads to far better generalization on \mathcal{X} .
- Faster to fit to \hat{X} and $L \ll N$ in practice—but generalization is our goal, not interpolation speed.

Proposition

Concentration of measure when expected gradients are bounded in N Suppose $z \sim \mathcal{N}(\mathbf{0}_N, \Sigma)$, where the spectral radius of Σ , denoted by $\rho(\Sigma)$, is independent of N, z^1 a draw from z, and $f : \mathbb{R}^N \to \mathbb{R}$ is a function with expected gradient bounded in N. Then:

$$\mathbb{P}\left(\left|f(z^{1}) - \mathbb{E}\left[f(z)\right]\right| \geq \epsilon\right) \leq rac{
ho(\Sigma)C}{\epsilon^{2}}rac{1}{N}$$

- As Ledoux (2001) puts it: "A random variable that depends in a Lipschitz way on many independent variables (but not too much on any of them) is essentially constant."
- With concentration of measure, dimensionality is not a curse; it is a blessing!

Concretely, for our problem can calculate $\mathbb{E}[u(x', X') \mid w, \omega]$ with a single draw of idiosyncratic shocks W

Solving the Model

Our deep learning architectures

- We will specify several deep learning architectures $\mathcal{H}(\theta)$:
 - 1. ϕ is approximated as a function of a finite set of moments à la Krusell-Smith but in a fully nonlinear way as in Fernández-Villaverde et al. (2019). We use 1 and 4 moments.
 - 2. ϕ is approximated by a flexible ReLU network with two layers in ϕ and 128 coefficients).
- The baseline φ(Identity), φ(Moments), and φ(ReLU) have 49.4K, 49.8K, and 66.8K coefficients respectively regardless of N.
- In all cases, ρ is a highly parameterized neural network with four layers.
- A surprising benefit of a high-dimensional approximation is the "double-descent" phenomenon in machine learning (see Belkin et al., 2019, and Advani et al., 2020): more coefficients makes it easier to find minimum-norm solutions.
- All the code in PyTorch but very easy to implement in any ML framework.

Solution method follows "interpolation" methods

- 1. Pick: $\hat{\chi}$ as simulated trajectories from X_0 . Only need dozens/hundreds of points $\hat{\chi}$ regardless of N 2. **Choose**: implement the \mathcal{H} with $\boldsymbol{\mu}$ with $\boldsymbol{\rho}$ and $\boldsymbol{\phi}$ as discussed
- 3. Fit: residual $\varepsilon(X; u) \equiv \gamma u(X) \beta \mathbb{E} \left[P(X') + \gamma (1 \delta) u(X') \right]$ using LOM for X'

$$\min_{\hat{u}\in\mathcal{H}}\sum_{X\in\hat{\mathcal{X}}}\varepsilon(X;\hat{u})^2$$

• But don't forget the better mental model is that this finds a particular interpolating solution

$$egin{array}{l} \min_{\hat{u}\in\mathcal{H}} ||\hat{u}||_{\mathcal{S}} \ ext{s.t. } arepsilon(X;\hat{u})=0, & ext{ for } X\in\hat{\mathcal{X}} \end{array}$$

4. Verify: Norm S unknown, but check $\varepsilon(X; \hat{u})$ sample/simulate by drawing $X \in \mathcal{X} \setminus \hat{\mathcal{X}}$ from X_0

Study two cases: linear ($\nu = 1$) and nonlinear ($\nu > 1$) demand functions

Case 1: Linear to verify algorithms and methods

- With $\nu = 1$, we have a linear demand function: $p(X) = 1 \frac{1}{N} \sum_{i=1}^{N} x_i$.
- It generates an LQ dynamic programming problem (only the mean of x_i matters!).
- We can find the exact u(x, X) using the linear regulator solution.
- The LQ solution gives us a benchmark against which we can compare our deep learning solution.
- The neural network "learns" very quickly that the solution is $u(x, X) = H_0 + \frac{1}{N}H_1\sum_{i=1}^N x_i$ and finds a high-dimensional approximation which matches that for the training grid.
- We also compute a modified linear regulator solution with *one* Monte Carlo draw instead of setting the individual shocks to zero: illustrates how concentration of measure works.
- Bonus point: we show how to implement this modified linear regulator solution. Useful for non-Gaussian LQ problems where certainty equivalence does not hold.

Figure 1: The Euler residuals for $\nu = 1$ and N = 128 for ϕ (Identity), ϕ (Moments), and ϕ (ReLU). The dark blue curve shows the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict the 2.5th and 97.5th percentiles.

Figure 2: Comparison between baseline approximate solutions and the LQ-regulator solution for the case with $\nu = 1$ and N = 128.

Figure 3: Performance of the ϕ (ReLU) for different *N* (median value of 21 trials).

Case 2: Nonlinear case with no "closed-form" solution

- With $\nu > 1$, we have a nonlinear demand function: $p(X) = 1 \frac{1}{N} \sum_{i=1}^{N} x_i^{\nu}$.
- Notice how, now, the whole distribution of of x_i matters!
- But we can still find the solution to this nonlinear case using exactly the same functional approximation and algorithm as before.
- We do not need change anything in the code except the value of ν .
- Since the LQ solution no longer holds, we do not have an exact solution to use as a benchmark, but can check residuals.
- Same model and method. Computation time by N nearly the same to linear case

Figure 4: The Euler residuals for $\nu = 1.5$ and N = 128 for ϕ (Moments) and ϕ (ReLU). The dark blue curve shows the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict the 2.5th and 26 97.5th percentiles.

Figure 5: The optimal policy *u* along the equilibrium paths for $\nu = [1.0, 1.05, 1.1, 1.5]$ and N = 128. Each path shows the optimal policy for a single trajectory.

Generalizability and Approximation Error

Recall the representation.

$$u(x,X) =
ho\left(x, \frac{1}{N}\sum_{i=1}^{N}\phi(X_i)
ight)$$

Can show that the following exact solution holds with our representation

- φ(X_n) = X_n identity, and L = 1
 ρ(x, y) = θ₁ + θ₂y
- Doesn't matter how to generate X since only need 2 points

They may let you reflect on symmetry and summary statistics but no surprises so far. But...

- Forgot we know any closed form, and see if overfitting hurts us.
- Fit three data points in \mathbb{R}^{512}
- Flexible functional form with 17.7 K parameters
- Now, evaluate for a whole bunch of reasonable trajectories from the initial condition and check the policy error
 - 5×10^{-5} MSE of euler, approximately 0.06% relative error of u(X)

The deep-learning generalization theory to explain this is emerging.

The cure to overfitting is to add more parameters

Belkin et al., 2019-traditional statistics/bias-variance tradeoff stop around the interpolation threshold

Concentration of measure is the bless of dimensionality

$$\mathbb{E}\left[P(X') + \gamma u(X') \mid \omega\right] \approx P(\hat{X}') + \gamma u(\hat{X}'), \text{ for draw of } \hat{X}' \mid \omega$$

- Conditional expectation becomes constant as N gets large!
- Can calculate the expectation with a single Monte-carlo draw
 - Draw $\hat{X'}$ conditioned on ω since u, P depend "a lot" on it
- Check P(X) doesn't depend too much on any $X_i \in X$
 - e.g. is expected gradient bounded in N
 - $u(\cdot)$ properties can follow from $P(\cdot)$
- Back to "continuum trick"
 - It worked because the P(·) and u(·) don't depend on any one agent outside of x (i.e. not sensitive to measure zero changes)
 - Very robust result, especially easy to fulfill with symmetric functions

Analytic euler error due to the concentration of measure

Euler Error with with one draw \hat{X} using LOM. Recall $\varepsilon \equiv -\gamma u(X) + \beta P(\hat{X}') + \gamma (1 - \delta) u(\hat{X}')$

Conclusions

- 1. Decreasing returns to scale: the policy becomes a function of x.
- 2. Multiple productivity types.
- 3. Complex idiosyncratic states.
- 4. Global solutions with transitions and aggregate shocks.
- 5. Many different network architectures.

Summarizing our contribution

- Primary goal: new tools to solve (previously) intractable models (e.g. finite # of agents)
- Method for solving high-dimensional dynamic programming problems and competitive equilibria
 - Dynamic models with heterogeneity & idiosyncratic/aggregate shocks
 - Global and with transitions, and yet no need for backwards induction or even a calculations of a steady-state
 - Dimensionality is a bless; only a curse in low to medium dimensions
- Using deep learning for function approximation with a huge # of parameters (\gg grid points)
 - Standard recursive economics. No agent-based modeling. No reinforcement learning
- Reevaluate Krusell-Smith and how far it can be pushed with symmetry+deep learning
- Some teasers from the implementation
 - 10000+ dimensional state-spaces are not a problem
 - 10000+ dimensional expectations with one Monte-carlo draw
 - Fit linear case with 17.7 K parameters fit with only 3 data points!

Appendix

Table 1: Performance of Different Networks in Solving the Linear Model

		Time (s)	Params (K)	Train MSE (ε)	Test MSE (ε)	Val MSE (ε)	Policy Error (<i>u</i> – <i>u</i> _{ref})	Policy Error $\left(\frac{ u-u_{ref} }{u_{ref}}\right)$
group	description							
$\phi(Identity)$	Baseline	42	49.4	4.1e-06	3.3e-07	3.3e-07	2.9e-05	0.10%
	Thin (64 nodes)	33	12.4	3.7e-06	2.7e-07	2.7e-07	3.4e-05	0.10%
$\phi(Moments)$	Baseline	55	49.8	1.4e-06	7.6e-07	7.6e-07	2.8e-05	0.09%
	Moments (1,2)	211	49.5	2.4e-06	1.1e-06	2.3e-06	4.4e-05	0.14%
	Very Shallow(1 layer)	241	0.6	1.1e-05	8.4e-06	7.9e-06	1.1e-02	34.00%
	Thin (64 nodes)	82	12.6	1.6e-06	9.1e-07	9.2e-07	3.8e-05	0.12%
$\phi({\sf ReLU})$	Baseline	107	66.8	3.7e-06	3.3e-07	3.3e-07	2.7e-05	0.09%
	L = 2	86	66.3	1.3e-05	2.1e-07	2.2e-07	2.6e-05	0.08%
	L = 16	91	69.9	5.5e-06	1.5e-07	1.5e-07	2.1e-05	0.07%
	$Shallow(\phi:1 \; layer, ho:2 \; layers)$	79	17.7	2.0e-06	5.5e-07	5.5e-07	3.2e-05	0.11%
	$Deep(\phi: 4 \; layers, ho: 8 \; layers)$	242	165.1	2.1e-03	2.2e-03	2.1e-03	2.7e-03	8.50%
	$Thin(\phi,\rho:64 nodes)$	87	17.0	1.1e-05	4.5e-07	4.5e-07	3.0e-05	0.10%

		Time (s)	Params (K)	Train MSE (ε)	Test MSE (ε)	Val MSE (ε)
group	description					
	Baseline	26	49.8	6.0e-06	5.0e-06	3.8e-06
	Moments (1)	24	49.4	2.7e-05	6.5e-06	3.4e-06
(Momente)	Moments (1,2)	27	49.5	8.0e-06	5.1e-06	3.6e-06
$\varphi(\text{moments})$	Very Shallow (1 layer)	252	0.6	8.3e-06	1.4e+00	5.0e-06
	Shallow (2 layers)	35	17.0	5.8e-06	1.2e+00	4.4e-06
	Thin (32 nodes)	66	3.2	1.1e-05	9.7e-06	4.4e-06
	Baseline	60	67.1	1.4e-05	4.7e-06	3.3e-06
	L = 1	109	66.3	9.4e-06	1.3e-05	4.5e-06
	L = 2	73	66.6	1.0e-05	3.3e-06	2.3e-06
	L = 8	73	68.1	1.1e-05	4.9e-06	2.0e-06
$\phi(RelU)$	L = 16	72	70.2	1.5e-05	5.4e-06	1.7e-06
	$Very\;Shallow(\phi,\rho:1\;layer)$	136	1.4	8.9e-06	4.8e+06	4.9e-06
	$Shallow(\phi, ho: 2 layers)$	47	34.3	1.0e-05	9.2e-06	2.8e-06
	$Thin(\phi,\rho:32 nodes)$	52	4.5	1.3e-05	6.0e-06	2.7e-06

Table 2: Nonlinear Model Performance

Comparing Performance: More Different Network Designs (Linear)

		Time (s)	Params (K)	Train MSE $(arepsilon)$	Test MSE (ε)	Val MSE (ε)	Policy Error $(u - u_{ref})$	Policy Error $\left(\frac{ u-u_{ref} }{u_{ref}}\right)$
group	description							
ϕ (Identity)	Baseline	42	49.4	4.1e-06	3.3e-07	3.3e-07	2.9e-05	0.10%
	Thin (64 nodes)	33	12.4	3.7e-06	2.7e-07	2.7e-07	3.4e-05	0.10%
	Shallow (2 layers)	159	16.6	3.7e-06	7.8e-07	7.6e-07	9.4e-03	33.53%
	Baseline	55	49.8	1.4e-06	7.6e-07	7.6e-07	2.8e-05	0.09%
	Moments (1,2)	211	49.5	2.4e-06	1.1e-06	2.3e-06	4.4e-05	0.14%
$\phi(Moments)$	Very Shallow(1 layer)	241	0.6	1.1e-05	8.4e-06	7.9e-06	1.1e-02	34.00%
	Shallow (2 layers)	137	17.0	1.6e-06	9.9e-07	9.5e-07	1.8e-02	59.41%
	Deep(8 layers)	241	115.3	2.8e-06	1.2e-06	1.0e-06	5.2e-05	0.16%
	Thin (64 nodes)	82	12.6	1.6e-06	9.1e-07	9.2e-07	3.8e-05	0.12%
	Wide (256 nodes)	61	197.9	1.8e-06	8.7e-07	8.0e-07	4.3e-05	0.13%
	Baseline	107	66.8	3.7e-06	3.3e-07	3.3e-07	2.7e-05	0.09%
	L=1	88	66.0	1.8e-05	2.3e-07	2.4e-07	2.8e-05	0.10%
	L = 2	86	66.3	1.3e-05	2.1e-07	2.2e-07	2.6e-05	0.08%
	L = 8	70	67.8	3.0e-05	5.9e-07	5.9e-07	3.3e-05	0.11%
$\phi(ReLU)$	L = 16	91	69.9	5.5e-06	1.5e-07	1.5e-07	2.1e-05	0.07%
	$Shallow(\phi:1 layer, \rho:2 layers)$	79	17.7	2.0e-06	5.5e-07	5.5e-07	3.2e-05	0.11%
	$Shallow(\phi:1 \; layer)$	58	50.4	8.7e-06	1.5e-07	1.5e-07	2.5e-05	0.08% 37
	Shallow(a, 2 lavors)	00	24.0	2 1 0 0 6	4.20.07	4.20.07	2 70 05	0.00%

Comparing Performance: Different Networks Designs (nonlinear)

		Time	Params	Train MSE	Test MSE	Val MSE
group	description	(3)	(11)	(2)	(2)	(2)
	Baseline	26	49.8	6.0e-06	5.0e-06	3.8e-06
	Moments (1)	24	49.4	2.7e-05	6.5e-06	3.4e-06
(Mananta)	Moments (1,2)	27	49.5	8.0e-06	5.1e-06	3.6e-06
ϕ (moments)	Very Shallow (1 layer)	252	0.6	8.3e-06	1.4e+00	5.0e-06
	Shallow (2 layers)	35	17.0	5.8e-06	1.2e+00	4.4e-06
	Thin (32 nodes)	66	3.2	1.1e-05	9.7e-06	4.4e-06
	Baseline	60	67.1	1.4e-05	4.7e-06	3.3e-06
	L = 1	109	66.3	9.4e-06	1.3e-05	4.5e-06
	L = 2	73	66.6	1.0e-05	3.3e-06	2.3e-06
	L = 8	73	68.1	1.1e-05	4.9e-06	2.0e-06
$\phi(\text{ReLU})$	L = 16	72	70.2	1.5e-05	5.4e-06	1.7e-06
	$Very\;Shallow(\phi,\rho:1\;layer)$	136	1.4	8.9e-06	4.8e+06	4.9e-06
	$Shallow(\phi, ho: 2 layers)$	47	34.3	1.0e-05	9.2e-06	2.8e-06 ³⁸